Exercise 3.9: Characteristic Curve for Cosine PDF

From LNTwww
Revision as of 16:36, 22 November 2019 by Guenter (talk | contribs)

Rechteck– und Cosinus–WDF

Gesucht ist eine stetige, monoton steigende nichtlineare Kennlinie  $y =g(x)$, die aus einer zwischen  $-1$  und  $+1$  gleichverteilten Zufallsgröße  $x$  eine neue Zufallsgröße  $y$  mit „cosinusförmiger” WDF generiert:

$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
  • Die Zufallsgröße  $y$  kann ebenfalls nur Werte zwischen  $-1$  und  $+1$  annehmen.
  • Die beiden Dichtefunktionen  $f_x(x)$  und  $f_y(y)$  sind nebenstehend skizziert.





Hinweise:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Außerhalb des Bereichs  $-1 \le x \le +1$  kann  $g(x)$  beliebig sein.
Die Kennlinie muss symmetrisch um  $x= 0$  sein:   $g(-x) = g(x)$.
Die Zufallsgröße  $y$  hat eine kleinere Varianz als  $x$.

2

Berechnen Sie den  $f_y(y)$–Wert bei  $y = 0$:   $A = f_y(0)$.

$A \ = \ $

3

Bestimmen Sie die Steigung  $h\hspace{0.05cm}'(y)$  der Umkehrfunktion  $x = h(y)$, wobei für  $|y| \le 1$  stets  $h\hspace{0.05cm}'(y) > 0$  gelten soll?  Welche Steigung gilt bei  $y = 0$ ?

$h'(y = 0) \ = \ $

4

Berechnen Sie mit dem Ergebnis aus  (3)  die Funktion  $x = h(y)$  unter der Nebenbedingung  $h(0) = 0$.  Welcher Wert ergibt sich für  $y = 1$ ?

$h(y=1) \ = \ $

5

Ermitteln Sie den Funktionsverlauf  $y = g(x)$  der gesuchten Kennlinie.  Welcher Funktionswert ergibt sich an der Stelle  $x = 1$ ?

$g(x = 1) \ = \ $


Musterlösung

(1)  Richtig sind die Aussagen 1 und 3:

  • Da $x$ nur Werte zwischen $\pm 1$ annehmen kann, ist der Verlauf der Kennlinie außerhalb dieses Bereichs für die Zufallsgröße $y$ ohne Belang.
  • Die Bedingung $g(-x) = g(x)$ muss nicht eingehalten werden. Es gibt beliebig viele Kennlinien, die die gewünschte WDF erzeugen können.
  • Die unter Punkt (5) berechnete Kennlinie ist beispielsweise punktsymmetrisch:   $g(-x) = -g(x)$.
  • Schon die grafischen Darstellungen der beiden Dichtefunktionen zeigen, dass $\sigma_y^2 < \sigma_x^2$ ist.


(2)  Das Integral über die WDF muss stets gleich $1$ sein. Daraus folgt:

$$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$


(3)  Die Transformationsformel kann wie folgt umgeformt werden:

$$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$

Die Umkehrfunktion $x = h(y)$ einer monoton ansteigenden Kennlinie $y = g(x)$ steigt ebenfalls monoton an.
Deshalb kann auf die Betragsbildung verzichtet werden und man erhält:

$$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$

An der Stelle $y = 0$ hat die Steigung den Wert $h'(y= 0)=π/2\hspace{0.15cm}\underline{\approx 1.571}$.


(4)  Man erhält durch (unbestimmte) Integration:

$$h(y)=\int h'(y)\, {\rm d} y + C = \frac{\pi}{2}\cdot \frac{2}{\pi}\cdot \sin(\frac{\pi}{ 2}\cdot y) + C.$$


Die Nebenbedingung $h(y= 0) = 0$ führt zur Konstanten $C = 0$ und damit zum Ergebnis:

$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} h(y = 1) \hspace{0.15cm}\underline{= 1}.$$


(5)  Die Umkehrfunktion der in der Teilaufgabe (4) ermittelten Funktion $x = h(y)$ lautet:

$$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
  • Diese Kennlinie steigt im Bereich $-1 \le x \le +1$  von  $y = -1$  bis  $y = +1$  monoton an.
  • Der gesuchte Wert ist also $g(x= 1) \hspace{0.15cm}\underline{= +1}$.