Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.7: Coherence Bandwidth

From LNTwww
Revision as of 18:29, 22 April 2020 by Javier (talk | contribs)

Verzögerungs–LDS und
Frequenz–Korrelationsfunktion

For the power spectral density of the delay, we assume an exponential behavior. With  Φ0=ΦV(τ=0)  we have

ϕV(τ)/ϕ0=eτ/τ0.

The constant  τ0  can be determined from the tangent in the point  τ=0  according to the upper graph. Note that  ΦV(τ)  has dimension  [1/s] . Furthermore,

  • The probability density function (PDF)  fV(τ)  has the same form as  ΦV(τ), but is normalized to area  1 .
  • The  average excess delay or mean excess delay  mV  is equal to the linear expectation  E[τ]  and can be determined from the PDF  fV(τ) .
  • The  multipath spread or delay spread  σV  gives the standard deviation (dispersion) of the random variable  τ . In the theory part we also use the term  TV for this.
  • The displayed frequency correlation function  φF(δf)  can be calculated as the Fourier transform of the power spectral density of the delay  ΦV(τ) :
φF(Δf)ΦV(τ).
  • The coherence bandwidth  BK  is the value of   Δf at which the frequency correlation function  φF(Δf)  has dropped to half in absolute value.




Notes:

  • This task belongs to the topic of the chapter  GWSSUS–Kanalmodell.
  • This task requires knowledge of   computation of moments  of random variables from the book „Stochastic Signal Theory”.
  • In addition, the following Fourier transform is given:
x(t)={eλt0f¨urt0f¨urt<0X(f)=1λ+j2πf.



Questionnaire

1

What is the probability density  fV(τ)  of the delay?

fV(τ)=eτ/τ0.
f_{\rm V}(\rm e} = 1/\tau_0 \cdot ^{-\tau/\tau_0},
fV(τ)=Φ0eτ/τ0.

2

Determine the average delay time for  \tau_0 = 1 \ \ \rm µ s.

m_{\rm V} \ = \

\ \rm µ s

3

Which value results for the multipath widening with  \tau_0 = 1 \ \ \rm µ s?

\sigma_{\rm V} \ = \

\ \rm µ s

4

What equation applies to the frequency–correlation function  \varphi_{\rm F}(\delta f)?

\varphi_{\rm F}(\Delta f) = \big[1/\tau_0 + {\rm j} \ 2 \pi \cdot \delta f \big]^{-1},
\varphi_{\rm F}(\Delta f) = {\rm e}^ {-(\tau_0 \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta f)^2}.

5

Determine the coherence bandwidth  B_{\rm K}.

B_{\rm K} \ = \

\ \ \rm kHz


Sample solution

(1)  The integral over the power spectral density of the delay delivers with {\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0) the result \int_{0}^{+\infty} {\it \Phi}_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \int_{0}^{+\infty} {\rm e}^{-\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.

  • This gives for the probability density function

$$f_{\rm V}(\tau) = \frac{{{\it \phi}_{\rm V}(\tau) }{{\it \phi}_{\rm 0} \cdot \tau_0}= \frac{1}{\frac{1}{\a_dot_0} \cdot {\rm e}^{-\tau / \tau_0} \hspace{0.05cm}.$$

  • Solution 2 is therefore correct.


(2)  The k–te moment of a Exponential_Random_Size is equal to m_k = k according to our nomenclature! \cdot \tau_0^k.

  • With k = 1 this results in the linear mean value m_1 = m_{\rm V}:

$$m_{\rm V} = \tau_0 \hspace{0.1cm} \underline {= 1\,{\rm & micro; s} \hspace{0.05cm}. $$

(3)  According to the Steiner's Theorem, the following applies generally to the variance of a random variable: \sigma^2 = m_2 \, –m_1^2.

  • According to the above equation, m_2 = 2 \cdot \tau_0^2. It follows:

$$\sigma_{\rm V}^2 = m_2 - m_1^2 = 2 \cdot \tau_0^2 - (\tau_0)^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma_{\rm V} = \tau_0 \hspace{0.1cm} \underline {= 1\,{\rm & micro; s} \hspace{0.05cm}. $$


(4)  {\it \Phi}_{\rm V}(\tau) is identical to x(t) given in the auxiliary equation if t is replaced by \tau and \lambda by 1/\tau_0.

  • Thus \varphi_{\rm F}(\delta f) has the same course as X(f) with the substitution f → \delta f:

\varphi_{\rm F}(\delta f) = \frac{1}{1/\tau_0 + {\rm j} \cdot 2\pi \delta f} = \frac{\tau_0}{1 + {\rm j} \cdot 2\pi \cdot \tau_0 \cdot \delta f}\hspace{0.05cm}.$ *"Correct is the <u>first equation. '''(5)'''  The coherence bandwidth is implicit in the following equation: |\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} \frac{1}{2} \cdot |\varphi_{\rm F}(\delta f = 0)| = \frac{\tau_0}{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(\Delta f = B_{\rm K})|^2 = \frac{\dot_0^2}{1 + (2\pi \cdot \dot_0 \cdot B_{\rm K})^2} \stackrel {!}{=} \frac{\tau_0^2}{4}'"`UNIQ-MathJax26-QINU`"'\Rightarrow \hspace{0.3cm}(2\pi \cdot \tau_0 \cdot B_{\rm K})^2 = 3 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_{\rm K}= \frac{\sqrt{3}}{2\pi \cdot \tau_0} \approx \frac{0.276}{ \tau_0}\hspace{0.05cm}.

  • With \tau_0 = 1 \ \ \rm µ s follows for the coherence bandwidth B_{\rm K} \ \underline {= 276 \ \ \rm kHz}.