Exercise 4.4: Pointer Diagram for DSB-AM

From LNTwww
Revision as of 10:49, 1 September 2020 by Javier (talk | contribs) (Text replacement - "Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation" to "Signal_Representation/Fourier_Transform_Laws")

Spektrum des analytischen Signals

Wir gehen aus von einem cosinusförmigen Quellensignal  $q(t)$  mit

  • der Amplitude  $A_{\rm N} = 0.8 \ \text{V}$  und
  • der Frequenz  $f_{\rm N}= 10 \ \text{kHz}$.


Die Frequenzumsetzung erfolgt mittels  Zweiseitenband–Amplitudenmodulation mit Träger, abgekürzt ZSB–AM.

Das modulierte Signal  $s(t)$  lautet mit dem (normierten) Träger  $z(t) = \text{cos}(\omega_{\rm T} \cdot t)$  und dem Gleichanteil  $q_0 = 1 \ \text{V}$:

$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} V} + {\rm 0.8 \hspace{0.05cm}V}\cdot {\cos} ( \omega_{\rm N}\cdot t)\right) \cdot {\cos} ( \omega_{\rm T}\cdot t) = \\ & = q_0 \cdot {\cos} ( \omega_{\rm T}\cdot t) + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}+ \omega_{\rm N}) \cdot t) + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$

Der erste Term beschreibt den Träger, der zweite Term das sogenannte obere Seitenband (OSB) und der letzte Term das untere Seitenband (USB).

Die Skizze zeigt das Spektrum  $S_+(f)$  des dazugehörigen analytischen Signals für  $f_{\rm T} = 50 \ \text{kHz}$. Man erkennt

  • den Träger (rot),
  • das obere Seitenband (blau) und
  • das untere Seitenband (grün).


In der Teilaufgabe  (5)  ist nach dem Betrag von  $s_+(t)$  gefragt. Hierunter versteht man die Länge des resultierenden Zeigers.




Hinweise:


Fragebogen

1

Wie lautet das analytische Signal  $s_+(t)$. Wie groß ist dieses zur Zeit  $t = 0$?

$\text{Re}[s_+(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_+(t=0)]\ = \ $

 $\text{V}$

2

Welche der folgenden Aussagen sind zutreffend?

$s_+(t)$  ergibt sich aus  $s(t)$, wenn man  $\cos(\text{...})$  durch  ${\rm e}^{{\rm j}(\text{...})}$  ersetzt.
Ist  $s(t)$  eine gerade Zeitfunktion, so ist  $s_+(t)$  rein reell.
Zu keinem Zeitpunkt verschwindet der Imaginärteil von  $s_+(t)$.

3

Welchen Wert besitzt das analytische Signal zur Zeit  $t = 5 \ {\rm µ}\text{s}$?

$\text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

4

Welchen Wert besitzt  $s_+(t)$  zum Zeitpunkt  $t = 20 \ {\rm µ}\text{s}$?

$\text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

5

Wie groß ist die kleinstmögliche Zeigerlänge? Zu welchem Zeitpunkt  $t_{\text{min}}$  tritt dieser Wert zum ersten Mal auf?

$|s_+(t)|_{\text{min}}\ = \ $

 $\text{V}$
$t_{\text{min}}\ = \ $

 ${\rm µ} \text{s}$


Musterlösung

(1)  Durch Fourierrücktransformation von  $S_+(f)$  unter Berücksichtigung des  Verschiebungssatzes  gilt:

$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.$$

Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen.

  • In obiger Gleichung bedeutet beispielsweise  $\omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}$.
  • Zum Zeitpunkt  $t = 0$  zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik).
  • Man erhält den rein reellen Wert  $s_+(t = 0) \;\underline{= 1.8 \ \text{V}}$.
Drei verschiedene analytische Signale


(2)  Die erste Aussage ist richtig und ergibt sich aus der Hilbert-Transformation. Dagegen stimmen die nächsten beiden Aussagen nicht:

  • $s_+(t)$  ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls  $s(t) = 0$.
  • Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte.
  • Der Zeigerverbund dreht immer in mathematisch positiver Richtung.
  • Überschreitet der Summenvektor die reelle Achse, so verschwindet zu diesem Zeitpunkt der Imaginärteil und  $s_+(t)$  ist rein reell.


(3)  Die Periodendauer des Trägersignals beträgt  $T_0 = 1/f_T = 20 \ {\rm µ} \text{s}$.

  • Nach  $t = 5 \ {\rm µ} \text{s}$  (siehe mittlere Grafik) hat sich der Träger somit um  $90^{\circ}$  gedreht.
  • Der blaue Zeiger (OSB) dreht um  $20\%$  schneller, der grüne (USB) um  $20\%$  langsamer als der rote Drehzeiger (Trägersignal):
$$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$
  • Somit sind die in  $ 5 \ {\rm µ} \text{s}$  zurückgelegten Winkel von OSB und USB  $108^{\circ}$  bzw.  $72^{\circ}$.
  • Da sich zu diesem Zeitpunkt die Realteile von OSB und USB kompensieren, ist  $s_+(t=5 \ {\rm µ} \text{s})$  rein imaginär und man erhält:
$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.$$


(4)  Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt $t$ = $T_0 = 20 \ {\rm µ} \text{s}$ hat der blaue Zeiger bereits $72^{\circ}$ mehr zurückgelegt und der grüne Zeiger dementsprechend $72^{\circ}$ weniger. Die Summe der drei Zeiger ist wieder rein reell und ergibt entsprechend der rechten Grafik:

$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.236 \hspace{0.05cm} V}}.$$


(5)  Der Betrag ist minimal, wenn die Zeiger der beiden Seitenbänder gegenüber dem Träger um  $180^{\circ}$  versetzt sind. Daraus folgt:

$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$

Innerhalb einer Periode  $T_0$  des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von  $\pm72^{\circ}$  auf. Daraus folgt:

$$t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.$$