Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Calculating with Complex Numbers

From LNTwww


Reelle Zahlenmengen


In den folgenden Kapiteln dieses Buches spielen komplexe Größen stets eine wichtige Rolle. Obwohl das Rechnen mit komplexen Zahlen bereits in der Schulmathematik behandelt und geübt wird, haben unsere Erfahrungen gezeigt, dass auch Studierende von naturwissenschaftlichen und technischen Fachgebieten damit durchaus Probleme haben. Vielleicht hängen diese Schwierigkeiten auch damit zusammen, dass „komplex” im Alltag oft als Synonym für „kompliziert” verwendet wird, während „reell” laut Duden für „zuverlässig, ehrlich und redlich” steht.

Deshalb werden hier am Ende dieses ersten Grundlagenkapitels die Rechenregeln für komplexe Zahlen kurz zusammengefasst.

Zunächst folgen einige Anmerkungen über reelle Zahlenmengen, für die im strengen mathematischen Sinne die Bezeichnung „Zahlenkörper” richtiger wäre. Hierzu gehören:

Definitionen: 

  • Natürliche Zahlen  N={1,2,3,...}.   Mit diesen Zahlen sind für  n, kN  die Rechenoperationen „Addition”  (m=n+k),  „Multiplikation”  (m=nk)  und „Potenzbildung”  (m=nk)  möglich. Das jeweilige Ergebnis einer Rechenoperation ist wieder eine natürliche Zahl:   mN.


  • Ganze Zahlen  Z={...,3,2,1, 0,+1,+2,+3,...}.   Diese Zahlenmenge ist eine Erweiterung der natürlichen Zahlen  N. Die Einführung der Menge  Z  war notwendig, um die Ergebnismenge einer Substraktion  (m=nk)  zu erfassen, zum Beispiel  57=2.


  • Rationale Zahlen  Q={z/n}  mit  zZ  und  nN.   Mit dieser auch als Bruchzahlen bekannten Zahlenmenge liegt auch für jede Division ein definiertes Ergebnis vor. Schreibt man eine rationale Zahl in Dezimalschreibweise, so treten ab einer gewissen Dezimalstelle nur Nullen auf  (Beispiel:  2/5=0.400...)  oder es ergeben sich Periodizitäten  (Beispiel:  2/7=0.285714285...). Da  n=1  erlaubt ist, sind die ganzen Zahlen eine Teilmenge der rationalen Zahlen:   ZQ.


  • Irrationale Zahlen  Iz/n  mit  zZ, nN.   Obwohl es unendlich viele rationale Zahlen gibt, verbleiben ebenfalls unendlich viele Zahlen, die nicht als Bruch dargestellt werden können. Beispiele hierfür sind die Zahl  π=3.141592654...  (wobei es auch bei mehr Dezimalstellen keine Perioden gibt)  oder das Ergebnis der Gleichung   a2=2a=±2=±1.414213562.... Auch dieses Ergebnis ist irrational, was bereits  Euklid  in der Antike bewiesen hat.
Reelle Zahlen auf dem Zahlenstrahl


  • Reelle Zahlen  R=QI als die Gesamtheit aller rationalen und irrationalen Zahlen.
Diese können entsprechend ihren Zahlenwerten geordnet und auf dem so genannten  Zahlenstrahl  eingezeichnet werden, wie die nebenstehende Grafik verdeutlicht.



Imaginäre und komplexe Zahlen


Mit der Einführung der irrationalen Zahlen war zwar die Lösung der Gleichung  a22=0  möglich, nicht jedoch die Lösung der Gleichung  a2+1=0.

Der Mathematiker  Leonhard Euler  löste dieses Problem, indem er den Körper der reellen Zahlen um die  imaginären Zahlen  erweiterte. Er definierte dazu die  imaginäre Einheit  wie folgt:

j=1  j2=1.

Anzumerken ist, dass Euler diese Größe mit  „i”  bezeichnet hat und dies auch heute noch in der Mathematik so üblich ist. In der Elektrotechnik hat sich dagegen die Bezeichnung  „j”  durchgesetzt, da  „i”  bereits mit dem zeitabhängigen Strom belegt ist.

Definition:  Die  komplexe Zahl  z  ist im allgemeinen die Summe einer reellen Zahl  x  und einer imaginären Zahl  jy:

z=x+jy.

x  und  y  entstammen hierbei der Menge  R  der reellen Zahlen. Die Menge aller möglichen komplexen Zahlen bezeichnet man als den Körper  C  der komplexen Zahlen.


Aus dem Zahlenstrahl der reellen Zahlen wird nun die komplexe Ebene, die durch zwei um  90  verdrehte Zahlenstränge für Real– und Imaginärteil aufgespannt wird.

Zahlen in der komplexen Ebene

Beispiel 1:  Die komplexe Zahl  z1=2j  ist eine der zwei möglichen Lösungen der Gleichung  z2+4=0. Die andere Lösung ist  z2=2j.

Dagegen geben  z3=2+j  und  z4=2j  die beiden Lösungen zu folgender Gleichung an: 

(z2j)(z2+j)=0  z24z+5=0.

Man bezeichnet  z4=z3  auch als die  Konjugiert-Komplexe  von  z3.

  • Die Summe  z3+z4  ist rein reell: 
z3+z4=2Re[z3]=2Re[z4].
  • Die Differenz  z3z4  ist rein imaginär: 
z3z4=j[2Im[z3]]=j[2Im[z4]].


Anmerkung:   In der Literatur werden komplexe Größen oft durch Unterstreichung gekennzeichnet. Hierauf wird in den  LNTwww–Büchern verzichtet.


Darstellung nach Betrag und Phase


Eine komplexe Zahl  z  kann außer durch den Realteil  x  und den Imaginärteil  y  auch durch ihren Betrag  |z|  und die Phase  ϕ  beschrieben werden.

Konjugiert-Komplexe einer Zahl

Es gelten folgende Umrechnungen:

|z|=x2+y2,ϕ=arctan(y/x),
x=|z|cos(ϕ),y=|z|sin(ϕ).

Somit kann die komplexe Größe  z  auch in folgender Form dargestellt werden:

z=|z|cos(ϕ)+j|z|sin(ϕ)=|z|ejϕ.

Hierbei wurde der  Satz von Euler  verwendet, der unten bewiesen wird.  Dieser besagt, dass die komplexe Größe  ejϕ  den Realteil  cos(ϕ)  und den Imaginärteil  sin(ϕ)  aufweist.

Weiter erkennt man aus der Grafik, dass für die  Konjugiert-Komplexe  von  z=x+jy  gilt: 

z=xjy=|z|ejϕ.

Beweis des Eulerschen Satzes:  Dieser basiert auf dem Vergleich von Potenzreihenentwicklungen.

  • Die Reihenentwicklung der Exponentialfunktion lautet: 
ex=1+x1!+x22!+x33!+x44!+ ....
  • Mit imaginärem Argument kann hierfür auch geschrieben werden: 
ejx=1+jx1!+j2x22!+j3x33!+j4x44!+ ....
  • Berücksichtigt man  j2=1,  j3=j,  j4=1,  j5=j, ...  und fasst die reellen und die imaginären Terme zusammen, so erhält man
ejx=A(x)+jB(x).
  • Für die beiden Reihen gilt dabei:
A(x)=1x22!+x44!x66!+ ...=cos(x),B(x)=x1!x33!+x55!x77!+ ...=sin(x).
  • Daraus folgt direkt der  Satz von Euler
ejx=cos(x)+jsin(x)q.e.d.


Rechenregeln für komplexe Zahlen


Die Rechengesetze für zwei komplexe Zahlen

z1=x1+jy1=|z1|ejϕ1,z2=x2+jy2=|z2|ejϕ2

sind derart definiert, dass sich für den Sonderfall eines verschwindenden Imaginärteils die Rechenregeln der reellen Zahlen ergeben. Man spricht vom so genannten  Permanenzprinzip.

Für die Grundrechenarten gelten folgende Regeln: 

  • Die Summe zweier komplexer Zahlen  (bzw. deren Differenz)  wird gebildet, indem man ihre Real- und Imaginärteile addiert  (bzw. subtrahiert): 
z3=z1+z2=(x1+x2)+j(y1+y2),
z4=z1z2=(x1x2)+j(y1y2).
  • Das Produkt zweier komplexer Zahlen kann in der Realteil- und Imaginärteildarstellung durch Ausmultiplizieren unter Berücksichtigung von  j2=1  gebildet werden. Einfacher gestaltet sich die Multiplikation allerdings, wenn  z1  und  z2  mit Betrag und Phase geschrieben werden: 
z5=z1z2=(x1x2y1y2)+j(x1y2+x2y1),
z5=|z1|ejϕ1|z2|ejϕ2=|z5|ejϕ5|z5|=|z1||z2|,ϕ5=ϕ1+ϕ2.
  • Die Division ist in der Exponentialschreibweise ebenfalls überschaubarer. Die beiden Beträge werden dividiert und die Phasen im Exponenten subtrahiert: 
z6=z1z2=|z6|ejϕ6|z6|=|z1||z2|,ϕ6=ϕ1ϕ2.
Summe, Differenz, Produkt & Quotient komplexer Zahlen

Beispiel 2:  In der Grafik sind als Punkte innerhalb der komplexen Ebene dargestellt:

  • die komplexe Zahl  z=0.75+j=1.25ej53.1,


  • deren Konjugiert-Komplexe  z=0.75j=1.25ej53.1,


  • die Summe  s=z+z=1.5  (rein reell),


  • die Differenz  d=zz=2j  (rein imaginär),


  • das Produkt  p=zz=1.2521.5625  (ebenfalls rein reell),


  • der Quotient  q=z/z=ej106.2  mit Betrag  1  und dem doppelten Phasenwinkel von  z.


Die Thematik dieses Kapitels wird ausführlich im Lernvideo  Rechnen mit komplexen Zahlen  behandelt.


Aufgaben zum Kapitel


Aufgabe 1.3: Rechnen mit komplexen Zahlen

Aufgabe 1.3Z: Nochmals komplexe Zahlen