Exercise 2.2: Kraft–McMillan Inequality

From LNTwww
Revision as of 15:52, 1 November 2022 by Hwang (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Four examples of binary codes and three ternary codes

In the figure some exemplary binary and ternary codes are given.

  • With the binary code  $\rm B1$  all possible source symbols  $q_\mu$  $($with index  $\mu = 1$, ... , $8)$  are represented by a encoded sequence  $\langle c_\mu \rangle $  of uniform length  $L_\mu = 3$ .
  • This code is unsuitable for data compression for this reason.


The possibility of data compression arises only when

  • the  $M$  source symbols are not equally likely, and
  • the length  $L_\mu$  of the code words are different.


For example, the binary code  $\rm B2$  has this property:  

  • Here, one code word each has the length   $1$,  $2$  and  $3$, respectively  $(N_1 = 1,\ N_2 = 2,\ N_3 = 3)$.
  • Two code words have the length  $L_\mu = 4$  $(N_4 = N_5 = 4)$.


A prerequisite for the decodability of such a code is that the code is  prefix-free . 

  • That is, no code word may be the prefix (i.e., the beginning) of a longer code word.
  • A necessary condition for a code for data compression to be prefix-free was stated by Leon Kraft in 1949, called  Kraft's inequality:
$$\sum_{\mu=1}^{M} \hspace{0.2cm} D^{-L_{\mu}} \le 1 \hspace{0.05cm}.$$

Here denote

  • $M$  the number of possible source symbols  $q_\mu$   ⇒   "symbol set size",
  • $L_\mu$  the length of the code word  $c_\mu$  associated with the source symbol  $q_\mu$,
  • $D = 2$  denotes a binary code  $(\rm 0$  or  $\rm 1)$  and  $D = 3$  denotes a ternary code  $(\rm 0$,  $\rm 1$,  $\rm 2)$.


A code can be prefix-free only if Kraft's inequality is satisfied. 

The converse does not hold:   If Kraft's inequality is satisfied, it does not mean that this code is actually prefix-free.



Hint:


Question

1

Which of the binary codes satisfy Kraft's inequality?

$\rm B1$,
$\rm B2$,
$\rm B3$,
$\rm B4$.

2

Which of the given binary codes are prefix-free?

$\rm B1$,
$\rm B2$,
$\rm B3$,
$\rm B4$.

3

Which of the given ternary codes are prefix-free?

$\rm T1$,
$\rm T2$,
$\rm T3$.

4

What are the characteristics of the ternary code  $\rm T1$?

$ N_1 \ = \ $

$ N_2 \ = \ $

$ N_3 \ = \ $

5

How many trivalent code words  $(L_\mu = 3)$  could be added to the  $\rm T1$  code without changing the prefix freedom?

$\Delta N_3 \ = \ $

6

The ternary code  $\rm T3$  is to be expanded to a total of  $N = 9$  code words.  How to achieve this without violating the prefix freedom?

Addition of four three-valued code words.
Addition of four four-valued code words.
Addition of one trivalent and three tetravalent code words.


Solution

(1)  The correct solutions are 1, 2 and 3.  The following applies to the binary codes given:

  • $\rm B1$:    $8 \cdot 2^{-3} = 1$   ⇒   condition fulfilled,
  • $\rm B2$:    $1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 2 \cdot 2^{-4}= 1$   ⇒   condition fulfilled,
  • $\rm B3$:    $1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 2 \cdot 2^{-4}= 1$   ⇒   condition fulfilled,
  • $\rm B4$:    $1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 2 \cdot 2^{-3} + 1 \cdot 2^{-4}= 17/16$   ⇒   condition not fulfilled.


(2)  Proposed solutions 1 and 2 are correct:

  • The code  $\rm B4$, which does not satisfy Kraft's inequality, is certainly not prefix-free either.
  • But if Kraft's inequality is fulfilled, it is still not certain that this code is also prefix-free.
  • In code  $\rm B3$  the code word  "10"  is the beginning of the code word  "1011".
  • In contrast, codes  $\rm B1$  and  $\rm B2$  are actually prefix-free.


(3)  The correct solutions are 1 and 3:

  • Kraft's inequality is satisfied by all three codes.
  • As can be seen from the table, codes  $\rm T1$  and  $\rm T3$  are indeed prefix-free.
  • The code  $\rm T2$ , on the other hand, is not prefix-free because "1" is the beginning of the code word "10".


(4)  $N_i$  indicates how many code words with  $i$  symbols there are in the code.  For the code  $\rm T1$  it is:

$$N_1 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}, \hspace{0.2cm}N_2 \hspace{0.15cm}\underline{= 2}\hspace{0.05cm}, \hspace{0.2cm}N_3 \hspace{0.15cm}\underline{= 6}\hspace{0.05cm}.$$


(5)  According to Kraft's inequality, the following must be true

$$N_1 \cdot 3^{-1} + N_2 \cdot 3^{-2} + N_3 \cdot 3^{-3 } \le 1\hspace{0.05cm}.$$

For given  $N_1 = 1$  and  $N_2 = 2$  , this is satisfied as long as holds:

$$N_3 \cdot 3^{-3 } \le 1 - 1/3 - 2/9 = 4/9 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}N_3 \le 12 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm \Delta}\,N_3 \hspace{0.15cm}\underline{= 6}\hspace{0.05cm}.$$

The additional code words are  $\rm 210, \,211, \,212, \,220, \,221, \,222$.


(6)  For code  $\rm T3$  it holds:

  • $S({\rm T3})= 2 \cdot 3^{-1} +  2 \cdot 3^{-2} + 1 \cdot 3^{-3 } = {25}/{27}\hspace{0.05cm}.$
  • Because of  $S({\rm T3}) \le 1$  the ternary code  $\rm T3$  satisfies Kraft's inequality and it is also prefix-free.


Let us now consider the proposed new codes.

  • Code $\rm T4$ $(N_1 = 2, \ N_2 = 2, \ N_3 = 5)$:
$$S({\rm T4})= S({\rm T3}) + 4 \cdot 3^{-3 } = {29}/{27}\hspace{0.1cm} > \hspace{0.1cm}1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm T4 \hspace{0.15cm}is\hspace{0.15cm} unsuitable}\hspace{0.05cm},$$
  • Code $\rm T5$ $(N_1 = 2, \ N_2 = 2, \ N_3 = 1, \ N_4 = 4)$:
$$S({\rm T5})= S({\rm T3}) + 4 \cdot 3^{-4 } = {79}/{81}\hspace{0.1cm} < \hspace{0.1cm}1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm T5 \hspace{0.15cm}is\hspace{0.15cm} suitable}\hspace{0.05cm},$$
  • Code $\rm T6$ $(N_1 = 2, \ N_2 = 2, \ N_3 = 2, \ N_4 = 3)$:
$$S({\rm T6})= S({\rm T3}) + 1 \cdot 3^{-3 } + 3 \cdot 3^{-4 } = \frac{75 + 3 + 3}{81}\hspace{0.1cm} = \hspace{0.1cm}1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm T6 \hspace{0.15cm}is\hspace{0.15cm} suitable}\hspace{0.05cm}.$$

Thus, the two last proposed solutions are correct.

For example, the total  $N = 9$  code words of the prefix-free code  $\rm T6$  are:

$$\rm 0, \, 1, \, 20, \,21, \,220, \,221, \,2220, \, 2221 , \,2222.$$