Exercise 3.7: Some Entropy Calculations

From LNTwww
Revision as of 11:11, 1 September 2021 by Guenter (talk | contribs)

Diagram: Entropies and information

We consider the two random variables  $XY$  and  $UV$  with the following two-dimensional probability mass functions:

$$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$
$$P_{UV}(U, V) \hspace{0.05cm}= \begin{pmatrix} 0.068 & 0.132\\ 0.272 & 0.528 \end{pmatrix}\hspace{0.05cm}$$

For the random variable  $XY$  the following are to be calculated in this task:

  • the joint entropy:
$$H(XY) = -{\rm E}\big [\log_2 P_{ XY }( X,Y) \big ],$$
  • the two individual entropies:
$$H(X) = -{\rm E}\big [\log_2 P_X( X)\big ],$$
$$H(Y) = -{\rm E}\big [\log_2 P_Y( Y)\big ].$$

From this, the following descriptive variables can also be determined very easily according to the above scheme – shown for the random variable  $XY$:

  • the conditional entropies:
$$H(X \hspace{0.05cm}|\hspace{0.05cm} Y) = -{\rm E}\big [\log_2 P_{ X \hspace{0.05cm}|\hspace{0.05cm}Y }( X \hspace{0.05cm}|\hspace{0.05cm} Y)\big ],$$
$$H(Y \hspace{0.05cm}|\hspace{0.05cm} X) = -{\rm E}\big [\log_2 P_{ Y \hspace{0.05cm}|\hspace{0.05cm} X }( Y \hspace{0.05cm}|\hspace{0.05cm} X)\big ],$$
  • the mutual information between $X$ and $Y$:
$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] \hspace{0.05cm}.$$

Finally, verify qualitative statements regarding the second random variable  $UV$ .




Hints:


Questions

1

Calculate the joint entropy.

$H(XY) \ = \ $

$\ \rm bit$

2

What are the entropies of the one-dimensional random variables  $X$  and  $Y$ ?

$H(X) \ = \ $

$\ \rm bit$
$H(Y) \ = \ $

$\ \rm bit$

3

How large is the mutual information between the random variables  $X$  and  $Y$?

$I(X; Y) \ = \ $

$\ \rm bit$

4

Calculate the two conditional entropies.

$H(X|Y) \ = \ $

$\ \rm bit$
$H(Y|X) \ = \ $

$\ \rm bit$

5

Which of the following statements are true for the two-dimensional random variable $UV$?

The one-dimensional random variables  $U$  and  $V$  are statistically independent.
The mutual information of  $U$  and  $V$  is  $I(U; V) = 0$.
For the compound entropy  $H(UV) = H(XY)$ holds.
The relations  $H(U|V) = H(U)$  and  $H(V|U) = H(V)$.


Solution

(1)  From the given composite probability we obtain

$$H(XY) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.18} + 0.16\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.16}+ 0.02\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.02}+ 0.64\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.64} \hspace{0.15cm} \underline {= 1.393\,{\rm (bit)}} \hspace{0.05cm}.$$


(2)  The one-dimensional probability functions are  $P_X(X) = \big [0.2, \ 0.8 \big ]$  and  $P_Y(Y) = \big [0.34, \ 0.66 \big ]$.  From this follows:

$$H(X) = 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.8\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.8}\hspace{0.15cm} \underline {= 0.722\,{\rm (bit)}} \hspace{0.05cm},$$
$$H(Y) =0.34 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.34} + 0.66\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.66}\hspace{0.15cm} \underline {= 0.925\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  From the graph on the information page you can see the relationship:

$$I(X;Y) = H(X) + H(Y) - H(XY) = 0.722\,{\rm (bit)} + 0.925\,{\rm (bit)}- 1.393\,{\rm (bit)}\hspace{0.15cm} \underline {= 0.254\,{\rm (bit)}} \hspace{0.05cm}.$$


(4)  Similarly, according to the graph on the information page:

$$H(X \hspace{-0.1cm}\mid \hspace{-0.08cm} Y) = H(XY) - H(Y) = 1.393- 0.925\hspace{0.15cm} \underline {= 0.468\,{\rm (bit)}} \hspace{0.05cm},$$
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.08cm} X) = H(XY) - H(X) = 1.393- 0.722\hspace{0.15cm} \underline {= 0.671\,{\rm (bit)}} \hspace{0.05cm}$$
Entropy values for the random variables $XY$ and $UV$
  • The left diagram summarises the results of subtasks  (1), ... ,  (4)  true to scale.
  • The joint entropy is highlighted in grey and the mutual information in yellow.
  • A red background refers to the random variable  $X$,  and a green one to  $Y$.  Hatched fields indicate a conditional entropy.


The right graph describes the same situation for the random variable  $UV$   ⇒   subtask  (5).


(5)  According to the diagram on the right, statements 1, 2 and 4 are correct:

  • One recognises the validity of  $P_{ UV } = P_U · P_V$   ⇒   mutual information $I(U; V) = 0$  by the fact that the second row of the  $P_{ UV }$ matrix differs from the first row only by a constant factor  $(4)$ .
  • This results in the same one-dimensional probability functions as for the random variable  $XY$   ⇒   $P_U(U) = \big [0.2, \ 0.8 \big ]$  and  $P_V(V) = \big [0.34, \ 0.66 \big ]$.
  • Therefore  $H(U) = H(X) = 0.722\ \rm bit$  and  $H(V) = H(Y) = 0.925 \ \rm bit$.
  • Here, however, the following now applies for the joint entropy:   $H(UV) = H(U) + H(V) ≠ H(XY)$.