Exercise 1.1: Multiplexing in the GSM System
The Global System for Mobile Communication (GSM) mobile communications standard, which has been established in Europe since 1992, uses both frequency division and time division multiplexing to enable several users to communicate in one cell.
Some characteristics of the system are given below in somewhat simplified form. A more detailed description can be found in the chapter General Description of GSM in the book Buch „Examples of Communication Systems”.
- The frequency band of the uplink (the connection from the mobile to the base station) is between $\text{890 MHz}$ and $\text{915 MHz}$. Taking into account the guard bands $($each around $\text{100 kHz)}$ at both ends, a total bandwidth of $\text{24.8 MHz}$ is thus available for the uplink.
- This band is used by $K_{\rm F}$ subchannels 'Radio Frequency Channels), which are adjacent in frequency with a respective spacing of $\text{200 kHz}$ The numbering is done with the running variable $k_{\rm F}$, starting with $k_{\rm F} = 1$.
- Der Frequenzbereich für den Downlink (die Verbindung von der Basis– zur Mobilstation) liegt um $\text{45 MHz}$ oberhalb des Uplinks und ist in genau gleicher Weise wie dieser aufgebaut.
- Jeder dieser FDMA–Teilkanäle wird gleichzeitig von $K_{\rm T}$ Teilnehmern per TDMA (Time Division Multiple Access) genutzt.
- Jedem Teilnehmer steht im Abstand von $\text{4.62 ms}$ ein Zeitschlitz der Dauer $T ≈ 577 \rm µ s$ zur Verfügung.
- Während dieser Zeit müssen die (näherungsweise) $156$ Bit übertragen werden, die das Sprachsignal unter Berücksichtigung von Datenreduktion und Kanalcodierung beschreiben.
Hinweise:
- Die Aufgabe gehört zum Kapitel Zielsetzung von Modulation und Demodulation.
- Bezug genommen wird insbesondere auf die Seiten
Fragebogen
Musterlösung
- $$K_{\rm F}\hspace{0.15cm}\underline{ = 124}.$$
(2) Die Mittenfrequenz des ersten Kanals liegt bei $\text{890.2 MHz}$. Der Kanal „RFCH 100” liegt um $\text{ 99 · 200 kHz = 19.8 MHz}$ höher:
- $$f_{\rm M}= 890.2 \ \rm MHz + 19.8 \ \rm MHz\hspace{0.15cm}\underline{ = 910 \ \rm MHz}.$$
(3) Um die Überlegungen zur Teilaufgabe (2) nutzen zu können, transformieren wir die Aufgabenstellung in den Uplink:
- Der gleiche Kanal mit der Kennung $k_{\rm F}$, der im Downlink die Frequenz $\text{940 MHz}$ nutzt, liegt im Uplink bei $\text{895 MHz}$.
- Damit gilt:
- $$k_{\rm F} = 1 + \frac {895 \,\,{\rm MHz } - 890.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }} \hspace{0.15cm}\underline {= 25}.$$
(4) In einem TDMA–Rahmen der Dauer $\text{4.62}$ Millisekunden können $K_{\rm T}\hspace{0.15cm}\underline{ = 8}$ Zeitschlitze mit jeweiliger Dauer $T = 577 \ \rm µ s$ untergebracht werden.
- Anmerkung: Bei GSM wird tatsächlich $K_{\rm T} = 8$ verwendet.
(5) Mit den Ergebnissen der Teilaufgaben (1) und (4) erhält man:
- $$K = K_{\rm F} \cdot K_{\rm T} = 124 \cdot 8 \hspace{0.15cm}\underline {= 992}$$
(6) Während der Zeit $T = 577 \ \rm µs$ müssen $156$ Bit übertragen werden.
- Damit stehen für jedes Bit die Zeit $T_{\rm B} = 3.699 \ \rm µ s$ zur Verfügung.
- Daraus ergibt sich die (Brutto–)Bitrate
- $$R_{\rm Brutto} = \frac {1 }{T_{\rm B}}\hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
- Diese Brutto–Bitrate beinhaltet neben den das Sprachsignal beschreibenden Datensymbolen auch die Trainigssequenz zur Kanalschätzung und die Redundanz für die Kanalcodierung. Die Netto–Bitrate beträgt beim GSM–System für jeden der acht Benutzer nur etwa $\text{13 kbit/s}$.