Exercise 2.3: DSB-AM Realization
In order to realize the so-called "DSB-AM with carrier", an amplifier with the characteristic curve
- y=g(x)=U⋅(1−e−x/U)
must be used. Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively. The parameter U=3 V indicates the saturation voltage of the amplifier.
This curve is operated at the operating point A0=2 V. This is achieved, for example, by the input signal
- x(t)=A0+z(t)+q(t).
Assume cosine oscillations for both the carrier and the source signal:
- z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz,
- q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz.
In solving this problem, use the auxiliary quantity
- w(t)=x(t)−A0=z(t)+q(t).
The nonlinear characteristic curve can be developed according to a Taylor series around the operating point:
- y(x)=y(A0)+11!⋅y′(A0)⋅(x−A0)+12!⋅y″
The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows:
- y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}
The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from \text{23 kHz} to \text{37 kHz}. That is, all frequencies other than f_{\rm T}, f_{\rm T}±f_{\rm N} and f_{\rm T}±2f_{\rm N} are removed by the bandpass.
The graph shows the characteristic curve g(x) and the approximations g_1(x), g_2(x) and g_3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g_3(x) is indistinguishable from g(x) in the range shown.
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Reference will also be made to the chapter Description of nonlinear systems in the book "Linear and Time Invariant Systems".
Questions
Solution
- Thus, the auxiliary quantity w(t) can take values between w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V} and w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V} .
(2) The coefficient c_0 is equal to the characteristic value at the operating point. Using A_0 = 2 \ \rm V and U = 3 \ \rm V we obtain:
- c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
- Accordingly, for the Taylor coefficient c_1:
- c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.
(3) The further derivatives (n ≥ 2) are:
- y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
- This results in the following coefficients:
- c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
- c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.
(4) Setting c_3 = 0, the output signal of the amplifier is:
- y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
- Thus, after the bandpass, the following signal components remain:
- s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.
- The modulation depth is then determined as the quotient of the "amplitude" of the message oscillation over the "amplitude" of the carrier:
- m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.
(5) Answers 2 and 3are correct:
- Considering the cubic part, y(t) includes the following other components:
- y_3(t) = c_3 \cdot (z(t) + q(t))^3 = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.
- The first term results in components at f_{\rm T} and 3f_{\rm T}, and the last term results in components at f_{\rm N} and 3f_{\rm N}. The second term gives a component at f_{\rm N} and others at 2f_{\rm T} ± f_{\rm N}:
- 3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
- Accordingly, the third summand in the above equation leads to
- 3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
- Thus, within the frequency range from \text{23 kHz} to \text{37 kHz} , there is indeed a change in the spectral line at f_{\rm T} and new Dirac lines are formed at f_{\rm T} ± 2f_{\rm N}, i.e., at \text{24 kHz} and \text{36 kHz}.
- The resulting distortions are thus nonlinear ⇒ Answer 3 ist correct and Answer 4 is wrong.