Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.3: DSB-AM Realization

From LNTwww
Revision as of 18:43, 24 November 2021 by Reed (talk | contribs)

Nonlinear characteristic curve
forr AM–realization

In order to realize the so-called "DSB-AM with carrier", an amplifier with the characteristic curve

y=g(x)=U(1ex/U)

must be used. Here,  x=x(t)  and  y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively.   The parameter  U=3 V  indicates the saturation voltage of the amplifier.

This curve is operated at the operating point  A0=2 V.  This is achieved, for example, by the input signal

x(t)=A0+z(t)+q(t).

Assume cosine oscillations for both the carrier and the source signal:

z(t)=ATcos(2πfTt),AT=1V,fT=30kHz,
q(t)=ANcos(2πfNt),AN=1V,fN=3kHz.

In solving this problem, use the auxiliary quantity

w(t)=x(t)A0=z(t)+q(t).

The nonlinear characteristic curve can be developed according to a Taylor series around the operating point:

y(x)=y(A0)+11!y(A0)(xA0)+12!y

The output signal can then also be represented as depending on the auxiliary quantity  w(t)  as follows:

y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}

The DSB–AM signal  s(t)  is obtained by band-limiting y(t)  to the frequency range from  \text{23 kHz}  to  \text{37 kHz}.  That is, all frequencies other than  f_{\rm T},  f_{\rm T}±f_{\rm N}  and  f_{\rm T}±2f_{\rm N}  are removed by the bandpass.

The graph shows the characteristic curve  g(x)  and the approximations  g_1(x),  g_2(x)  and  g_3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation  g_3(x)  is indistinguishable from  g(x)  in the range shown.




Hints:


Questions

1

In what range can the input signal  x(t) vary? variieren? Give the minimum and maximum values of the auxiliary variable  w(t) = x(t) - A_0 .

w_{\rm min} \ = \

\ \text{V}
w_{\rm max} \ = \

\ \text{V}

2

Calculate the coefficients  c_0  and  c_1  of the Taylor series.

c_0 \ = \

\ \text{V}
c_1 \ = \

3

What are the coefficients  c_2  and  c_3&nbsp of the nonlinear characteristic curve?

c_2\ = \

\ \rm V^{ -1 }
c_3\ = \

\ \rm V^{ -2 }

4

Show that a "DSB-AM with carrier" constellation results when  c_3  is considered negligibly small. What is the modulation depth  m?

m \ = \

5

Assuming that  c_3  cannot be considered negligibly small, which of the following statements are true?

The weight of the spectral line at f_{\rm T}  is unchanged.
s(t)  now includes Dirac lines at f_{\rm T} ± 2f_{\rm N}.
The cubic term leads to nonlinear distortions.
The cubic term leads to linear distortions..


Solution

(1)  From  x(t) = A_0 + z(t) + q(t) , with   A_0 = 2\ \rm V  and  A_{\rm T} = A_{\rm N} = 1 \ \rm V , we get the possible range  0 \ {\rm V} ≤ x(t) ≤ 4\ \rm V.

  • Thus, the auxiliary quantity  w(t)  can take values between  w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V}  and  w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V} .


(2)  The coefficient  c_0  is equal to the characteristic value at the operating point.  Using  A_0 = 2 \ \rm V  and  U = 3 \ \rm V  we obtain:

c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
  • Accordingly, for the Taylor coefficient  c_1:
c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.


(3)  The further derivatives   (n ≥ 2)  are:

y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
  • This results in the following coefficients:
c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.


(4)  Setting  c_3 = 0, the output signal of the amplifier is:

y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
  • Thus, after the bandpass, the following signal components remain:
s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.
  • The modulation depth is then determined as the quotient of the "amplitude" of the message oscillation over the "amplitude" of the carrier:
m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.


(5)  Answers 2 and 3are correct:

  • Considering the cubic part,  y(t)  includes the following other components:
y_3(t) = c_3 \cdot (z(t) + q(t))^3 = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.
  • The first term results in components at  f_{\rm T}  and  3f_{\rm T}, and the last term results in components at  f_{\rm N}  and  3f_{\rm N}.  The second term gives a component at   f_{\rm N}  and others at  2f_{\rm T} ± f_{\rm N}:
3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
  • Accordingly, the third summand in the above equation leads to
3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
  • Thus, within the frequency range from  \text{23 kHz}  to  \text{37 kHz} , there is indeed a change in the spectral line at  f_{\rm T}  and new Dirac lines are formed at   f_{\rm T} ± 2f_{\rm N}, i.e., at   \text{24 kHz}  and  \text{36 kHz}.
  • The resulting distortions are thus nonlinear  ⇒   Answer 3 ist correct and Answer 4 is wrong.