Exercise 3.2Z: Relationship between PDF and CDF

From LNTwww
Revision as of 11:05, 20 December 2021 by Guenter (talk | contribs)

Verteilungsfunktion  $ F_x(r)$

Gegeben ist die Zufallsgröße  $x$  mit der Verteilungsfunktion

$$ F_x(r)=\left\{\begin{array}{*{4}{c}} 0.25\cdot {\rm e}^{2\it r} &\rm f\ddot{u}r\hspace{0.1cm}\it r<\rm 0, \\ 1-0.25\cdot {\rm e}^{-2\it r} & \rm f\ddot{u}r\hspace{0.1cm}\it r\ge\rm 0. \\\end{array}\right.$$
  • Diese Funktion ist rechts dargestellt.
  • Es ist zu erkennen, dass an der Sprungstelle  $r = 0$  der rechtsseitige Grenzwert gültig ist.




Hinweise:



Fragebogen

1

Welche Eigenschaften einer Verteilungsfunktion (VTF) gelten, wenn die Zufallsgröße beidseitig unbegrenzt ist?

Die VTF steigt von  $0$  auf  $1$  zumindest schwach monoton an.
Die  $F_x(r)$–Werte  $0$  und  $1$  sind für endliche  $r$–Werte möglich.
Ein horizontaler Abschnitt weist darauf hin, dass in diesem Bereich die Zufallsgröße keine Anteile besitzt.
Vertikale Abschnitte sind möglich.

2

Wie groß ist die Wahrscheinlichkeit, dass  $x$  positiv ist?

${\rm Pr}(x > 0) \ = \ $

3

Wie groß ist die Wahrscheinlichkeit, dass  $|\hspace{0.05cm}x\hspace{0.05cm}|$  größer ist als  $0.5$?

${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| > 0.5) \ = \ $

4

Geben Sie die zugehörige WDF  $f_x(x)$  allgemein an und den Wert für  $x = 1$.

$f_x(x =1)\ = \ $

5

Wie groß ist die Wahrscheinlichkeit, dass  $x$  genau gleich  $1$  ist?

${\rm Pr}(x = 1)\ = \ $

6

Wie groß ist die Wahrscheinlichkeit, dass  $x$  genau gleich  $0$  ist?

${\rm Pr}(x = 0)\ = \ $


Musterlösung

(1)  Die Aussagen 1, 3 und 4 sind immer richtig:

  • Ein horizontaler Abschnitt in der VTF weist darauf hin, dass die Zufallsgröße in diesem Bereich keine Werte besitzt.
  • Dagegen weist ein vertikaler Abschnitt in der VTF auf eine Diracfunktion in der WDF  $($an gleicher Stelle  $x_0)$  hin.
  • Dies bedeutet, dass die Zufallsgröße den Wert  $x_0$  sehr häufig annimmt, nämlich mit endlicher Wahrscheinlichkeit.
  • Alle anderen Werte treten exakt mit der Wahrscheinlichkeit  $0$  auf.
  • Ist jedoch  $x$  auf den Bereich von  $x_{\rm min}$  bis  $x_{\rm max}$  begrenzt, so ist  $F_x(r) = 0$  für  $r < x_{\rm min}$  und  $F_x(r) = 1$  für  $r > x_{\rm max}$.
  • In diesem Sonderfall wäre auch die zweite Aussage zutreffend.


(2)  Die gesuchte Wahrscheinlichkeit kann man aus der Differenz der VTF–Werte an den Grenzen berechnen:

$${\rm Pr}( x> 0)= F_x(\infty)- F_x(\rm 0) \hspace{0.15cm}\underline{=\rm 0.25}.$$


(3)  Für die Wahrscheinlichkeit, dass  $x$  größer als  $0.5$  ist, gilt:

$${\rm Pr}(x> 0.5)=1- F_x(0.5)=\rm 0.25\cdot e^{-1} \hspace{0.15cm}{\approx0.092}. $$
  • Aus Symmetriegründen ist  ${\rm Pr}(x<- 0.5)$  genauso groß. Daraus folgt:
$${\rm Pr}( |\hspace{0.05cm} x\hspace{0.05cm}| >\rm 0.5) \hspace{0.15cm}\underline{= \rm 0.184}.$$


WDF der Laplace-Verteilung

(4)  Die WDF erhält man aus der zugehörigen VTF durch Differenzieren der zwei Bereiche.

  • Es ergibt sich eine zweiseitige Exponentialfunktion sowie eine Diracfunktion bei  $x = 0$ :
$$f_x(x)=\rm 0.5\cdot \rm e^{-2\cdot |\hspace{0.05cm}\it x\hspace{0.05cm}|} + \rm 0.5\cdot\delta(\it x).$$
  • Der gesuchte Zahlenwert ist  $f_x(x = 1)\hspace{0.15cm}\underline{= \rm 0.0677}$.


Hinweis:   Die zweiseitige Exponentialverteilung nennt man auch "Laplaceverteilung".


(5)  Im Bereich um  $1$  beschreibt  $x$  eine kontinuierliche Zufallsgröße.

  • Die Wahrscheinlichkeit, dass  $x$  exakt den Wert  $1$  aufweist, ist deshalb  ${\rm Pr}(x = 1)\hspace{0.15cm}\underline{= \rm 0}.$


(6)  In  $50\%$  der Zeit wird  $x = 0$  gelten:   ${\rm Pr}(x = 0)\hspace{0.15cm}\underline{= \rm 0.5}.$


Hinweise:

  • Die WDF eines Sprachsignals wird häufig durch eine zweiseitige Exponentialfunktion beschrieben.
  • Die Diracfunktion bei  $x = 0$  berücksichtigt vor allem Sprachpausen – hier in  $50\%$  aller Zeiten.