Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exponentially Distributed Random Variables

From LNTwww

One-sided exponential distribution


Definition:  A continuous random variable  x  is called  (one-sided)  exponentially distributed  if it can take only non–negative values and the PDF for  x>0  has the following shape:

fx(x)=λeλx.


PDF and CDF of an exponentially distributed random variable

The left sketch shows the  "probability density function"  (PDF)  of such an exponentially distributed random variable  x.  Highlight:

  • The larger the distribution parameter  λ  is,  the steeper the decay occurs.
  • By definition  f_{x}(0) = λ/2,  i.e. the mean of left-hand limit  (0)  and right-hand limit  (\lambda).


For the  "cumulative distribution function"  \rm (CDF),  we obtain for  r > 0  by integration over the PDF  (right graph):

F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.

The  "moments"  of the one-sided exponential distribution are generally equal to  

m_k = k!/λ^k.

From this and from Steiner's theorem,nbsp; we get for the  "mean"nbsp; and thenbsp; "rms value"  (ornbsp; "standard deviation"):

m_1={1}/{\lambda},
\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.

\text{Example 1:}  The exponential distribution has great importance for reliability studies,  and the term  "lifetime distribution"  is also commonly used in this context.

  • In these applications,  the random variable is often the time  t  that elapses before a component fails.
  • Furthermore,  it should be noted that the exponential distribution is closely related to the  Poisson distribution.

Transformation of random variables


To generate such an exponentially distributed random variable on a digital computer,  you can use e.g. a  nonlinear transformation.  The underlying principle is first stated here in general terms.

\text{Procedure:}  If a continuous valued random variable  u  possesses the PDF  f_{u}(u),  then the probability density function of the random variable transformed at the nonlinear characteristic  x = g(u)  holds:

f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.

Here,  g\hspace{0.05cm}'(u)  denotes the derivative of the characteristic curve  g(u)  and  h(x)  gives the inverse function to  g(u)  .


  • However,  the above equation is only valid under the condition that the derivative  g\hspace{0.03cm}'(u) \ne 0.
  • For a characteristic with horizontal sections  (g\hspace{0.05cm}'(u) = 0):  Additional Dirac delta functions appear in the PDF if the input variable has components in these ranges.
  • The weights of these Dirac functions are equal to the probabilities that the input variable lies in these ranges.


To transform random variables

\text{Example 2:}  Given a random variable  u  triangularly distributed between  -2  and  +2  on a nonlinearity with characteristic  x = g(u),

  • which,  in the range  \vert u \vert ≤ 1  triples the input values,  and
  • mapping all values  \vert u \vert > 1  to   x = \pm 3   depending on the sign,


then the PDF  f_{x}(x)  sketched on the right is obtained.


Please note:

  1. Due to the amplification by a factor of  3   ⇒   f_{x}(x)  is wider and lower than f_{u}(u) by this factor.
  2. The two horizontal limits of the characteristic at   u = ±1   lead to two Dirac delta functions at  x = ±3,  each with weight  1/8.
  3. The weight  1/8  corresponds to the green areas in the PDF  f_{u}(u).

Generation of an exponentially distributed random variable


\text{Procedure:}  Now we assume that the random variable  u  to be transformed is uniformly distributed between  0  (inclusive) and  1  (exclusive). 

  • Moreover,  we consider the monotonically increasing characteristic curve
x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).
  • It can be shown that by this characteristic  x=g_1(u)  a one-sided exponentially distributed random variable  x  with the following PDF arises 
    (derivation see next page):
f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.
  • Note:
  1. For  x = 0  the PDF value is half  (\lambda/2).
  2. Negative  x values do not occur because for  0 ≤ u < 1  the argument of the (natural) logarithm function does not become smaller than  1.


By the way,  the same PDF is obtained with the monotonically decreasing characteristic curve

x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).

Please note:

  • When using a computer implementation corresponding to the first transformation characteristic  x=g_1(u)   ⇒   the value  u = 1  must be excluded.
  • On the other hand,  if one uses the second transformation characteristic  x=g_2(u)   ⇒   the value  u =0  must be excluded.


The following  (German language)  learning video shall clarify the transformations derived here:
     "Erzeugung einer Exponentialverteilung"   \Rightarrow   "Generation of an exponential distribution".

Derivation of the corresponding transformation characteristic


\text{Exercise:}  Now derive the transformation characteristic  x = g_1(u)= g(u)  already used on the last page, which is derived from a random variable  equally distributed between  0  and  1  ; u  with the probability density function (PDF)  f_{u}(u)  forms a one-sided exponentially distributed random variable  x  with the PDF  f_{x}(x)  :

f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array} \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array} \right.


\text{Solution:} 

(1)  Starting from the general transformation equation.

f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}

is obtained by converting and substituting the given PDF f_{ x}(x):

\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.

Here  x = g\hspace{0.05cm}'(u)  gives the derivative of the characteristic curve, which we assume to be monotonically increasing.

(2)  With this assumption we get  \vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u  and the differential equation  {\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x  with solution  u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(3)  From the condition that the input variable  u =0  should lead to the output value  x =0 , we obtain for the constant  K =1  and thus  u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(4)  Solving this equation for  x  yields the equation given in front:

x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .
  • In a computer implementation, however, ensure that the critical value  1  is excluded for the equally distributed input variable  u   
  • This, however, has (almost) no effect on the final result.


Two-sided exponential distribution - Laplace distribution


Closely related to the exponential distribution is the so-called  Laplace distrubtion  with the probability density function

f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.

The Laplace distribution is a  two-sided exponential distribution that approximates sufficiently well, in particular, the amplitude distribution of speech– and music signals.

  • The moments  k–th order   ⇒   m_k  of the Laplace distribution agree with those of the exponential distribution for even  k  .
  • For odd  k  on the other hand, the (symmetric) Laplace distribution always yields  m_k= 0.


For generation one uses a between  ±1  equally distributed random variable  v  (where  v = 0  must be excluded)  and the transformation characteristic curve

x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).


Further notes:

  • From the  Exercise 3.8  one can see further properties of the Laplace distribution.
  • In the (German) learning video  Wahrscheinlichkeit und WDF  \Rightarrow Probability and PDF, it is shown which meaning the Laplace distribution has for the description of speech– and music signals.
  • With the applet  PDF, CDF and Moments  you can display the characteristics  (PDF, CDF, Moments)  of exponential and Laplace distributions.
  • We also refer you to the applet  Two-dimensional Laplace random quantities .


Exercises for the chapter


Exercise 3.8: Amplification and Limitation

Exercise 3.8Z: Circle (Ring) Area

Exercise 3.9: Characteristic Curve for Cosine PDF

Exercise 3.9Z: Sine Transformation