Contents
Erstes Nyquistkriterium im Zeitbereich
Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion des Signals
\(d(t) = \sum \limits_{\it (\nu)} a_\nu \cdot g_d ( t - \nu T)\)
zu den Zeitpunkten νT immer dann, wenn der Detektionsgrundimpuls gd(t)
- auf den Bereich | t | < T beschränkt ist, was für das Kapitel 1.2 vorausgesetzt wurde, oder
- äquidistante Nulldurchgänge zu den Zeitpunkten νT aufweist.
Aus Gründen einer möglichst einfachen Darstellung wird im Kapitel 1.3 das Detektionsstörsignal dN(t) als vernachlässigbar klein angenommen.
- \[g_d ( t = \nu T)= 0 \hspace{0.3cm}{\rm{f\ddot{u}r}}\hspace{0.3cm} \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...\]
Zu den Detektionszeitpunkten gilt d(νT) = aν · gNyq(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (ν < 0) sowie die Vorläufer der nachfolgenden Impulse (ν > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols a0 nicht.
Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls
\(g_{\rm Nyq} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot
t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot t}{2 \cdot
T}\right)\)
Erstes Nyquistkriterium im Frequenzbereich
Harry Nyquist hat die Bedingung für eine impulsinterferenzfreie Detektion nicht nur für den Zeitbereich formuliert, sondern 1928 auch das entsprechende Kriterium im Frequenzbereich angegeben.
Erstes Nyquistkriterium: Erfüllt das Spektrum Gd(f) des Detektionsgrundimpulses die Bedingung
\(\sum \limits_{\it k = -\infty}^{+\infty} G_d \left ( f - \frac{k}{T} \right)=
g_0 \cdot T = {\rm const.} \hspace{0.05cm}, \)
so ist gd(t) ein Nyquistimpuls mit äquidistanten Nulldurchgängen zu den Zeitpunkten
νT (ν ≠ 0) und der Amplitude gd(t = 0) = g0. Hinweis: Sie finden den Beweis auf Beweis des ersten Nyquistkriteriums.
Die nachfolgende Grafik zeigt zwei Nyquistspektren. Das Spektrum
\(G_1(f) = \left\{ \begin{array}{c} g_0 \cdot T \\
0 \\ \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
\\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}
|f| < {1}/({2T})\hspace{0.05cm}, \\
|f| > {1}/({2T}) \hspace{0.1cm} \\
\end{array}\)
erfüllt offensichtlich die oben formulierte Bedingung und zwar mit der kleinstmöglichen Bandbreite. Der dazugehörige Nyquistimpuls g1(t) = g0 · si(πt/T) klingt sehr langsam ab, nämlich asymptotisch mit 1/t.
Der rechts oben dargestellte Realteil des Spektrums G2(f) wurde aus dem Rechteckspektrum G1(f) durch Verschiebung von Teilstücken um 1/T nach rechts oder links konstruiert. Wegen
\(\sum \limits_{\it k = -\infty}^{+\infty} {\rm Re}\left[G_2 \left ( f -
\frac{k}{T} \right)\right]= g_0 \cdot T \hspace{0.05cm},
\hspace{1cm}\sum \limits_{\it k = -\infty}^{+\infty} {\rm Im}\left[G_2 \left ( f -
\frac{k}{T} \right)\right]= 0\)
handelt es sich bei G2(f) ebenfalls um ein Nyquistspektrum. Beim Imaginärteil heben sich die jeweils gleich schraffierten Anteile, die jeweils um 2/T auseinander liegen, auf. Die Angabe des dazugehörigen Nyquistimpulses g2(t) ist allerdings sehr kompliziert.
Beweis des ersten Nyquistkriteriums
- Wir gehen von der ersten Nyquistbedingung im Zeitbereich aus:\[g_{\rm Nyq}(\nu T) = \left\{ \begin{array}{c} g_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} \nu = 0 \hspace{0.05cm}, \\ \nu \ne 0 \hspace{0.1cm}. \\ \end{array}\]
- Aus dem zweiten Fourierintegral erhält man somit für ν ≠ 0:\[g_{\rm Nyq}(\nu T) = \int_{-\infty}^{+\infty}G_{\rm Nyq}(f) \cdot {\rm e}^{ \hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi f \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.\]
- Zerlegt man das Fourierintegral in Teilintegrale der Breite 1/T, so lauten die Bedingungsgleichungen:\[\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{(k-1/2)/T}^{(k+1/2)/T}G_{\rm Nyq}(f) \cdot {\rm e}^{ \hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi f \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.\]
- Mit der Substitution f ' = f + k/T folgt daraus:\[\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{-1/(2T)}^{1/(2T)}G_{\rm Nyq}(f' - \frac{k}{T} ) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm} (f'- k/T) \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f ' = 0 \hspace{0.05cm}.\]
- Für alle ganzzahligen Werte von k und ν gilt:\[{\rm e}^{-{\rm j} \hspace{0.05cm}2 \pi \hspace{0.05cm} k \hspace{0.05cm} \nu } = 1 \hspace{0.4cm} \Rightarrow \hspace{0.4cm}\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{-1/(2T)}^{1/(2T)}G_{\rm Nyq}(f' - \frac{k}{T} ) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}2 \pi \hspace{0.02cm}f' \hspace{0.02cm} \nu \hspace{0.05cm}T}\,{\rm d} f ' = 0 \hspace{0.05cm}.\]
- Durch Vertauschen von Summation und Integration sowie Umbenennen von f ' in f folgt weiter:\[\int_{-1/(2T)}^{1/(2T)}\hspace{0.2cm} \sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}2 \pi \hspace{0.02cm}f \hspace{0.02cm} \nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.\]
- Diese Forderung ist für alle ν ≠ 0 nur dann zu erfüllen, wenn die unendliche Summe unabhängig von f ist, also einen konstanten Wert besitzt:\[\sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) = K_{\rm Nyq} \hspace{0.05cm}.\]
- Aus der vorletzten Gleichung erhält man gleichzeitig für ν = 0:\[\int_{-1/(2T)}^{1/(2T)}\hspace{0.2cm} \sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) \,{\rm d} f = K_{\rm Nyq} \cdot \frac{1}{T} = g_0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}K_{\rm Nyq} = g_0 \cdot T \hspace{0.05cm}.\]
1/T–Nyquistspektren (1)
Eine besondere Bedeutung für die Digitalsignalübertragung besitzen solche Nyquistspektren, die auf den Frequenzbereich –1/T ≤ f ≤ +1/T beschränkt und zusammenhängend sind. Die Grafik zeigt mit der Trapez–Charakteristik und der Cosinus–Rolloff–Charakteristik zwei diesbezügliche Varianten.
Für beide Nyquistspektren gilt in gleicher Weise:
- Der Flankenabfall erfolgt zwischen den zwei Eckfrequenzen f1 und f2 punktsymmetrisch um die Nyquistfrequenz fNyq = 1/(2T) = (f1 + f2)/2. Das heißt, dass für 0 ≤ f ≤ fNyq gilt:\[G_{\rm Nyq}(f_{\rm Nyq}+f) + G_{\rm Nyq}(f_{\rm Nyq}-f) = g_0 \cdot T \hspace{0.05cm}.\]
- GNyq(f) ist für alle Frequenzen | f | ≤ f1 konstant gleich g0 · T und für | f | ≥ f2 identisch 0. Im Bereich zwischen f1 und f2 gilt:\[\frac{G_{\rm Nyq}(f)}{g_0 \cdot T } = \left\{ \begin{array}{c} \frac{f_2 - |f|}{f_2 -f_1 } \\ \\ \cos^2( \frac{\pi}{2}\cdot \frac{f_2 - |f|}{f_2 -f_1 }) \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{beim \hspace{0.15cm}Trapez}\hspace{0.05cm},} \\ \\ {\rm{\rm{beim \hspace{0.15cm}Cosinus-Rolloff}}\hspace{0.05cm}.} \\ \end{array}\]
- Zur Parametrisierung der Flankensteilheit verwenden wir in beiden Fällen den Rolloff–Faktor, der Werte zwischen 0 und 1 (einschließlich dieser Grenzen) annehmen kann:\[r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.05cm}.\]
- Für r = 0 (f1 = f2 = fNyq) ergibt sich das Rechteck-Nyquistspektrum, während der Rolloff-Faktor r = 1 (f1 = 0, f2 = 2fNyq) ein dreieckförmiges bzw. cos2–Spektrum angibt – je nachdem, von welcher der beiden oben abgebildeten Grundstrukturen man ausgeht.
Hinweis: In der Literatur wird der Rolloff–Faktor auch oft mit α („alpha”) bezeichnet.
1/T–Nyquistspektren (2)
Betrachten wir nun die Nyquistimpulse. Beim trapezförmigem Spektrum mit Rolloff–Faktor r erhält man:\[g_{_{\rm Trapez}} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi
\cdot t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot r \cdot
t}{T}\right) \hspace{0.5cm}{\rm mit }\hspace{0.5cm}{\rm si}(x) = {\rm sin}(x)/x .\]
Dagegen liefert die Fourierrücktransformation des Cosinus–Rolloff–Spektrums:\[g_{_{\rm CRO}} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot
t}{T}\right)\cdot \frac{\cos(\pi \cdot r \cdot t/T)}{1 - (2 \cdot
r \cdot t/T)^2 } \hspace{0.3cm}{\rm mit }\hspace{0.3cm}{\rm si}(x) = {\rm sin}(x)/x.\]
Diese beiden Nyquistimpulse kann man im nachfolgend genannten Interaktionsmodul mit der Einstellung Δf · T = 1 betrachten und sich dabei den Einfluss des Rolloff–Faktors verdeutlichen:
Tiefpässe im Frequenz– und ZeitbereichPlease add link
Die obere Grafik zeigt den Nyquistimpuls mit Trapezspektrum für verschiedene Rolloff–Faktoren. Unten ist der entsprechende Zeitverlauf für das Cosinus–Rolloff–Spektrum dargestellt. Man erkennt:
- Je kleiner der Rolloff–Faktor r ist, desto langsamer erfolgt der Abfall des Nyquistimpulses. Diese Aussage trifft sowohl für das Trapez– als auch für das Cosinus–Rolloff–Spektrum zu.
- Im Grenzfall r → 0 ergibt sich in beiden Fällen das rechteckförmige Nyquistspektrum und der si–förmige Nyquistimpuls,</nobr> der asymptotisch mit 1/t abklingt (grüne Kurven).
- Bei einem mittleren Rolloff (r ≈ 0.5) sind die ersten Überschwinger beim Trapezspektrum geringer als beim CRO–Spektrum, da bei gegebenem r die Nyquistflanke flacher verläuft (blaue Kurven).
- Mit dem Rolloff–Faktor r = 1 wird im Frequenzbereich aus dem Trapez ein Dreieck und aus dem CRO–Spektrum das Cosinus–Quadrat–Spektrum (rote Kurven).
- Mit r = 1 erfolgt der asymptotische Abfall der oberen Zeitfunktion (gemäß dem Trapezspektrum) mit 1/t2 und der Abfall der unteren Zeitfunktion (gemäß dem CRO–Spektrum) mit 1/t3.
Zweites Nyquistkriterium (1)
Vor der exakten mathematischen Definition soll anhand von Grafiken veranschaulicht werden, welche Bedeutung das zweite Nyquistkriterium zur Bewertung eines Digitalsystems besitzt.
- Die linke Grafik zeigt im Vorgriff auf das Kapitel 3.2 Please add link das Augendiagramm eines Nyquistsystems mit Cosinus–Rolloff–Charakteristik, wobei der Rolloff–Faktor r = 0.5 gewählt wurde. Da hier das erste Nyquistkriterium erfüllt ist (es besteht eine Punktsymmetrie um fNyq), ergibt sich für die vertikale Augenöffnung zum Zeitpunkt t = 0 der größtmögliche Wert 2 · gd(0). Alle Augenlinien gehen zum Zeitpunkt t = 0 durch einen der beiden rot markierten Punkte.
- Das mittlere Spektrum weist keine Symmetrie bezüglich des Flankenabfalls auf, so dass hier das erste Nyquistkriterium nicht erfüllt ist – im Gegensatz zum zweiten. Alle Augenlinien schneiden hier die Zeitachse zu den selben Zeiten (markiert durch die grünen Punkte), was beispielsweise die Taktwiedergewinnung mittels einer PLL (Phase-Locked Loop) erleichtert. Die horizontale Augenöffnung ist bei Erfüllung des zweiten Nyquistkriteriums maximal gleich der Symboldauer T.
- Das rechte Augendiagrammm verdeutlicht, dass beim CRO–Spektrum mit r = 1 – und nur bei diesem – sowohl das erste als auch das zweite Nyquistkriterium erfüllt werden. Der Nyquistimpuls\[g_d ( t )= g_0 \cdot \frac{\pi }{4}\cdot {\rm si} \left ( \frac{\pi \cdot t}{T}\right)\cdot \left [ {\rm si}(\pi \cdot (\frac{t}{T} + \frac{1}{2}) + {\rm si}(\pi \cdot (\frac{t}{T} - \frac{1}{2})\right]\]
- weist hier die erforderlichen Nulldurchgänge bei t = ±T, t = ±1.5T, t = ±2T, t = ±2.5T, ... auf, nicht jedoch bei ±0.5T. Die Impulsamplitude ist gd(t = 0) = g0.
Zweites Nyquistkriterium (2)
Ein Impuls gNyq-2(t), der das zweite Nyquistkriterium erfüllt, muss Nulldurchgänge bei ±1.5T, ±2.5T, ±3.5T, ... besitzen.
Dagegen weist ein Nyquist–1–Impuls Nulldurchgänge bei ±T, ±2T, ±3T auf. Deshalb lässt sich ein
Nyquist–2–Impuls immer als Summe zweier (eventuell unterschiedlicher) und um ±T/2 verschobener Nyquist–1–Impulse darstellen. Geht man von einem Impuls gNyq–1(t) aus, so gilt:\[g_{_{\rm Nyq-2}} ( t )= g_{_{\rm Nyq-1}} ( t +{T}/{2})+
g_{_{\rm Nyq-1}} ( t -{T}/{2})\hspace{0.05cm}.\]
Im Frequenzbereich lautet das zweite Nyquistkriterium (siehe Söder, G.; Tröndle, K.: Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme. Berlin – Heidelberg: Springer, 1985.):\[\sum_{k = -\infty}^{+\infty} \frac {G_d \left ( f - \frac{k}{T}
\right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}= {\rm const.}\]
Aufgrund der Begrenzung des Spektrums GNyq–1(f) auf den Bereich | f | ≤ fNyq = 1/(2T) beschränkt sich in obiger Gleichung die Summe auf den Term mit k = 0 und man erhält:\[G_{_{\rm Nyq-2}}(f) = \left\{ \begin{array}{c} g_0 \cdot T \cdot \cos(\frac{\pi \cdot f}{2 \cdot f_{_{\rm Nyq}}} )\\ \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| < f_{_{\rm Nyq}}\hspace{0.05cm}, \\ \\ {\rm{sonst}}\hspace{0.05cm}. \\ \end{array}\] Dieser Frequenzverlauf und das dazugehörige Augendiagramm ist in der Grafik auf der letzten Seite in der mittleren Spalte oben skizziert. Man erkennt deutlich die Erfüllung des zweiten Nyquistkriteriums.