Basics of Coded Transmission

From LNTwww


Informationsgehalt – Entropie – Redundanz (1)


Wir gehen von einer M–stufigen digitalen Nachrichtenquelle aus, die das Quellensignal

\(q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}a_\nu \in \{ a_1, ... , a_\mu , ... , a_{ M}\}\)

abgibt. Die Quellensymbolfolge 〈qν〉 ist auf die Folge 〈aν〉 der dimensionslosen Amplitudenkoeffizienten abgebildet. Vereinfachend wird zunächst für die Zeitlaufvariable ν = 1, ... , N gesetzt, während der Vorratsindex μ stets Werte zwischen 1 und M annehmen kann.

Ist das ν–te Folgenelement gleich aμ, so kann dessen Informationsgehalt mit der Wahrscheinlichkeit pνμ = Pr(aν = aμ) wie folgt berechnet werden: \[I_\nu = \log_2 \frac{1}{p_{\nu \mu}}= {\rm ld} \frac{1}{p_{\nu \mu}} \hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit)}\hspace{0.05cm}.\]
Der Logarithmus zur Basis 2  ⇒  log2 wird oft auch mit „ld(x)”  ⇒  Logarithmus dualis bezeichnet. Bei der numerischen Auswertung wird die Hinweiseinheit „bit” hinzugefügt. Mit dem Zehner-Logarithmus lg(x) bzw. dem natürlichen Logarithmus ln(x) gilt: \[{\rm log_2}(x) = \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.\]
Nach dieser auf C. E. Shannon zurückgehenden Definition von Information ist der Informationsgehalt eines Symbols umso größer, je kleiner dessen Auftrittswahrscheinlichkeit ist.

: Die Entropie ist der mittlere Informationsgehalt eines Folgenelements (Symbols). Diese wichtige informationstheoretische Größe lässt sich als Zeitmittelwert wie folgt ermitteln:

\[H = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N I_\nu = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \frac{1}{p_{\nu \mu}} \hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit)}\hspace{0.05cm}.\]
Natürlich kann die Entropie auch durch Scharmittelung berechnet werden.


Sind die Folgenelemente aν statistisch voneinander unabhängig, so sind die Auftrittswahrscheinlichkeiten pνμ = pμ unabhängig von ν und man erhält in diesem Sonderfall für die Entropie: \[H = \sum_{\mu = 1}^M p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \frac{1}{p_{ \mu}}\hspace{0.05cm}.\]
Bestehen dagegen statistische Bindungen zwischen benachbarten Amplitudenkoeffizienten aν, so muss zur Entropieberechnung die kompliziertere Definitionsgleichung herangezogen werden.


\(\)



[[File:||class=fit]]