Exercise 3.6: Transient Behavior
From LNTwww
- Wir betrachten in dieser Aufgabe ein Cosinussignal mit der Amplitude 1 und der Periodendauer T = 1 μs, das für alle Zeiten t (im Bereich ±∞) definiert ist:
- $$c(t) = \cos(2\pi \cdot \frac{t}{T}) \hspace{0.05cm} .$$
- Dagegen beginnt das kausale Cosinussignal (rote Kurve) erst zum Einschaltzeitpunkt t = 0:
- $$c_{\rm K}(t)= \left\{ \begin{array}{c} c(t) \\ 0 \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array}\begin{array}{*{20}c} { t \ge 0\hspace{0.05cm},} \\ { t < 0\hspace{0.05cm}.} \end{array}$$
- Für das beidseitig unbegrenzte Signal c(t) kann man nur das Fourierspektrum
- $$C(f) = \frac {1}{ 2} \cdot \delta (f - f_0) + \frac {1}{ 2} \cdot \delta (f + f_0) \quad {\rm mit} \quad f_0 = \frac {1}{ T}= 1\,\,{\rm MHz}$$
- angeben. Dagegen ist für das kausale Cosinussignal cK(t) auch die Laplace–Transformierte angebbar:
- $$C_{\rm L}(p) = \frac {p} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
- Entsprechend gilt für die Laplace–Transformierte der kausalen Sinusfunktion sK(t):
- $$S_{\rm L}(p) = \frac {2 \pi/T} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
- Die beidseitig unbegrenzte Sinusfunktion wird mit s(t) bezeichnet und ist als blau–gepunktete Kurve im unteren Diagramm dargestellt.
- Die Signale c(t), cK(t), s(t) und sK(t) werden nun an den Eingang eines Tiefpasses erster Ordnung mit der Übertragungsfunktion (bzw. der Impulsantwort)
- $$H_{\rm L}(p) = \frac {2 /T} { p + 2 /T} \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad h(t) = \frac{2}{T} \cdot {\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}t/T}$$
- angelegt. Die entsprechenden Ausgangssignale werden mit yC(t), yCK(t), yS(t) bzw. ySK(t) bezeichnet. Diese Signale sollen in dieser Aufgabe berechnet und zueinander in Bezug gesetzt werden.
- Hinweis: Zur Berechnung der Signale yCK(t) und ySK(t) bietet sich zum Beispiel der Residuensatz an, der im Kapitel 3.3 ausführlich beschrieben ist. Die Berechnungen zur Teilaufgabe 6) sind umfangreich.
Fragebogen
Musterlösung
- 1. Ersetzt man in der Übertragungsfunktion HL(p) den Parameter T durch 1/f0 sowie p durch j · 2πf, so erhält man für den Frequenzgang allgemein bzw. für f0 = 1 MHz:
- $$H(f) = \frac {2 /T} { {\rm j} \cdot 2 \pi f + 2 /T}= \frac {f_0} { {\rm j} \cdot \pi f + f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f= f_0) = \frac {1} { 1 + {\rm j} \cdot \pi }$$
- $$\Rightarrow \hspace{0.3cm} |H(f= f_0)| = \frac {1} { \sqrt{1 + \pi^2 }} \hspace{0.15cm}\underline{= 0.303}\hspace{0.05cm},\hspace{0.2cm}a(f= f_0)= - {\rm ln}\,\, |H(f= f_0)| \hspace{0.15cm}\underline{\approx 1.194\,\,{\rm Np}}$$
- $$\Rightarrow \hspace{0.3cm} {\rm arc}\,H(f= f_0)= - {\rm arctan}\,(\pi) \hspace{0.15cm}\underline{\approx -72^\circ} \hspace{0.05cm}, \hspace{0.2cm}b(f= f_0)= -{\rm arc}\,H(f= f_0) \hspace{0.15cm}\underline{\approx +72^\circ} \hspace{0.05cm}.$$
- 2. Das Signal yC(t) ist gegenüber c(t) um den Faktor 0.303 gedämpft und um τ ≈ 72/360 · T = T/5 verzögert. Man kann dieses Signal somit auch folgendermaßen beschreiben:
- $$y_{\rm C}(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \cos(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.05cm}.$$
- $$\Rightarrow \hspace{0.3cm} y_{\rm C}(t=0) = \frac {1} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx 0.092} \hspace{0.05cm}.$$
- Dieses Signal ist in der linken Grafik zur Musterlösung 5) blau–gepunktet dargestellt.
- 3. Das Signal yS(t) ist gegenüber s(t) ebenfalls um den Dämpfungsfaktor 0.303 kleiner und um die Zeitdauer τ ≈ T/5 verzögert. Es lässt sich wie folgt beschreiben:
- $$y_{\rm S}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \sin(2\pi \cdot \frac{t-T/5}{T}) $$
- $$\Rightarrow \hspace{0.3cm} y_{\rm S}(t=0) = -\frac {\pi} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx -0.289} \hspace{0.05cm}.$$
- Dieses Signal ist in der rechten Grafik zur Musterlösung 5) blau–gepunktet dargestellt.
- 4. Bei Th soll die Impulsantwort h(t) auf 1% des Maximalwertes abgeklungen sein. Somit gilt:
- $${\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}T_{ h}/T} = 0.01 \hspace{0.05cm} \Rightarrow \hspace{0.05cm} \frac{T_{ h}}{T} =\frac{1}{2} \cdot {\rm ln}\,\, \frac{1}{0.01} \hspace{0.15cm}\underline{\approx 2.3}\\ \Rightarrow \hspace{0.05cm}h(t=0) = {2}/{T}\hspace{0.05cm}, \hspace{0.2cm}h(t=T_{ h}) = {0.02}/{T}\hspace{0.05cm}.$$
- 5. Richtig sind die Aussagen 1 und 2. Die kausalen Signale yCK(t) und ySK(t) müssen für t < 0 gleich 0 sein. Da aber die Impulsantwort h(t) des betrachteten Filters für t > Th (nahezu) verschwindet, ist es nach Abschluss des Einschwingvorganges egal, ob das zeitlich unbegrenzte Cosinussignal c(t) oder das kausale Signal cK(t) am Eingang anliegt. Das gleiche gilt für die Sinussignale:
- $$t >T_{ h}: \hspace{0.3cm}y_{\rm CK}(t)=y_{\rm C}(t)\hspace{0.05cm}, \hspace{0.2cm}y_{\rm SK}(t)=y_{\rm S}(t)\hspace{0.05cm}.$$
- Die Grafik zeigt links die Ausgangssignale yC(t) und yCK(t) bei cosinusförmigem Eingang und rechts die Signale yS(t) und ySK(t) bei sinusförmigem Eingang. Beachten Sie die Laufzeit von T/5 (entsprechend der Phase 72°) in beiden Fällen. Bei yCK(t) sind die ersten Wellenberge kleiner als 1, bei ySK(t) größer, um die richtige Phasenlage von yC(t) bzw. yS(t) zu erreichen.
- 6. Mit den Abkürzungen
- $$p_{\rm x1}= {\rm j} \cdot {2\pi}/{T} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm x2}= -{\rm j} \cdot {2\pi}/{T} \hspace{0.05cm}, \hspace{0.2cm} p_{\rm x3}= -{2}/{T} \hspace{0.05cm}.$$
- kann für die Laplace–Transformierte des Signals yCK(t) geschrieben werden:
- $$Y_{\rm L}(p) = \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})(p-p_{{\rm x}3})} \hspace{0.05cm}.$$
- Die Zeitfunktion yCK(t) setzt sich somit nach dem Residuensatz aus drei Anteilen zusammen:
- Der erste Anteil ergibt sich unter Berücksichtigung von px2 = – px1 zu
- $$y_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}2})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}=\\ \hspace{0.25cm} = \hspace{0.2cm}\frac {-p_{{\rm x}3}\cdot p_{{\rm x}1}} { (p_{{\rm x}1}-p_{{\rm x}2})(p_{{\rm x}1}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t}= \frac {-p_{{\rm x}3}/2} { p_{{\rm x}1}-p_{{\rm x}3}}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
- In gleicher Weise erhält man für den zweiten Anteil:
- $$y_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=\\ \hspace{0.25cm} = \hspace{0.2cm}\frac {-p_{{\rm x}3}\cdot p_{{\rm x}2}} { (p_{{\rm x}2}-p_{{\rm x}1})(p_{{\rm x}2}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}2}\cdot \hspace{0.03cm}t}= \frac {p_{{\rm x}3}/2} { p_{{\rm x}1}+p_{{\rm x}3}}\cdot {\rm e}^{-p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
- Fasst man beide Anteile zusammen und berücksichtigt die Werte von px1 und px3, so erhält man
- $$y_{1\hspace{0.03cm}+2}(t)\hspace{0.25cm} = \hspace{0.2cm} \frac {1/T} { 2/T + {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm} t/T}+\frac {1/T} { 2/T - {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}=\\ \hspace{0.25cm} = \hspace{0.2cm}\frac {1/2} { 1 + {\rm j} \cdot \pi } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2} { 1 - {\rm j} \cdot \pi } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}=\\ \hspace{0.25cm} = \hspace{0.2cm}\frac {1/2 \cdot (1 - {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2 \cdot (1 + {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T} \hspace{0.05cm} .$$
- Mit Hilfe des Eulerschen Satzes kann hierfür auch geschrieben werden:
- $$y_{1\hspace{-0.03cm}+2} (t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= y_{\rm C}(t)\hspace{0.05cm}.$$
- Man erkennt, dass y1+2(t) gleich dem unter b) berechneten Signal yC(t) ist.
- Schließlich erhält man für das letzte Residuum:
- $$y_3(t)\hspace{0.25cm} = \hspace{0.2cm} \frac {-p_{{\rm x}3}^2} { (p_{{\rm x}3}-p_{{\rm x}1}) (p_{{\rm x}3}-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}3}\cdot \hspace{0.03cm}t}= \frac {-(2/T)^2 \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { (-2/T-{\rm j} \cdot 2\pi /T) (-2/T+{\rm j} \cdot 2\pi /T)} \\ = \hspace{0.2cm}\frac {-1 } { (1+{\rm j} \cdot \pi ) (1-{\rm j} \cdot \pi)} \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}=\frac {- 1} { 1+\pi^2} \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T} \hspace{0.05cm} .$$
- Damit lautet das Ausgangssignal bei kausalem Cosinussignal am Eingang:
- $$y_{\rm CK}(t) = y_1(t)+y_2(t)+y_3(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})-{\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
- $$\Rightarrow \hspace{0.3cm}y_{\rm CK}(t = {T}/{5}) = \frac { \cos(72^\circ) + \pi \cdot \sin(72^\circ)-{\rm e}^{\hspace{0.05cm}-0.4}} { {1 + \pi^2 }} \hspace{0.15cm}\underline{ \approx 0.24} < 0.303\hspace{0.05cm} .$$
- Zum Vergleich: Das Signal yC(t) hat zu diesem Zeitpunkt den Wert 0.303.
- Dagegen ergibt sich beim kausalen Sinussignal am Eingang allgemein und speziell zum Zeitpunkt des ersten Maximums bei t = 0.45T:
- $$y_{\rm SK}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})+\pi \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
- $$\Rightarrow \hspace{0.3cm} y_{\rm SK}(t = 0.45 \cdot T) = \frac { -\pi \cdot \cos(162^\circ) + \sin(162^\circ)+\pi \cdot{\rm e}^{\hspace{0.05cm}-0.9}} { {1 + \pi^2 }} \approx 0.42 > 0.303\hspace{0.05cm} .$$