Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.2Z: Measurement of the Frequency Response

From LNTwww
Revision as of 02:14, 29 June 2021 by Oezer (talk | contribs)


Measured signal amplitudes
and phases for filter  B

For the metrological determination of the filter frequency response, a sinusoidal input signal with an amplitude of  2V  and given frequency  f0  is applied. The output signal  y(t)  or its spectrum  Y(f)  are then determined according to magnitude and phase.

  • The magnitude spectrum at the output of filter  A  with frequency  f0=1 kHz is:
|YA(f)|=1.6Vδ(f±f0)+0.4Vδ(f±3f0).
  • For another filter  B  on the other hand, is always a harmonic oscillation with the (single) frequency  f0. For the frequencies  f0  given in the table the amplitudes  Ay(f0)  and the phases  φ_y(f_0)  are measured. Here, the following holds:
Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y} \cdot {\rm \delta } (f + f_0) + {A_y}/{2} \cdot {\rm e}^{ -{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).

In the task, filter  \rm B  should be given in the form:H_{\rm B}(f) = {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j}. \hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}

Here,

  • a_{\rm B}(f)  denotes the damping curve, and
  • b_{\rm B}(f)  the phase response.




Please note:


Questions

1

Which of the statements are true regarding filter  \rm A ?

The following holds:   |H(f)| = 0.8.
Filter  \rm A  does not represent an LTI–system.
The specification of a frequency response is not possible.

2

Which of the statements are true regarding filter  \rm B ?

Filter  \rm B  is a low-pass filter.
Filter  \rm B  is a high-pass filter.
Filter  \rm B  is a band-pass filter.
Filter  \rm B  is a band-stop filter.

3

Ermitteln Sie den Dämpfungswert und die Phase für Filter  \rm B  und  f_0 = 3 \ \text{kHz}.

a_{\rm B}(f_0 = \: \rm 3 \: kHz) \ = \

 \text{Np}
b_{\rm B}(f_0 = \: \rm 3 \: kHz) \ =\

 \text{Grad}

4

Welcher Dämpfungs– und Phasenwert ergibt sich für  f_0 = 2 \ \text{kHz}?

a_{\rm B}(f_0 = \: \rm 2 \: kHz) \ = \

 \text{Np}
b_{\rm B}(f_0 = \: \rm 2 \: kHz) \ =\

 \text{Grad}


Sample solution

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Bei einem LZI–System gilt  Y(f) = X(f) · H(f).
  • Daher ist es nicht möglich, dass im Ausgangssignal ein Anteil mit  3 f_0  vorhanden ist, wenn ein solcher im Eingangssignal fehlt.
  • Das heißt:   Es liegt hier kein LZI–System vor und dementsprechend ist auch kein Frequenzgang angebbar.


(2)  Richtig ist der Lösungsvorschlag 3:

  • Aufgrund der angegeben Zahlenwerte für  A_y(f_0)  kann von einem Bandpass ausgegangen werden.


(3)  Mit  A_x = 2 \text{ V}  und  \varphi_x = 90^\circ  (Sinusfunktion) erhält man für  f_0 = f_3 =3 \text{ kHz}:

H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 90^{\circ})} = 0.5.

Somit ergeben sich für  f_0 = f_3 = 3 \text{ kHz}  die Werte

  • a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np},
  • b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (Grad)}.


(4)  In analoger Weise kann der Frequenzgang bei  f_0 = f_2 =2 \text{ kHz}  ermittelt werden:

H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.

Damit erhält man für  f_0 = f_2 = 2 \ \text{ kHz}:

  • a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np},
  • b_{\rm B}(f_2) \rm \underline{\: = \: 20°}.


Bei  f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz}  gilt der gleiche Dämpfungswert. Die Phase hat jedoch das umgekehrte Vorzeichen. Also ist  b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.