Exercise 2.8: Asymmetrical Channel
A cosine-shaped source signal q(t) with amplitude AN and frequency fN is DSB amplitude modulated, such that the modulated signal is given by:
- s(t)=[q(t)+AT]⋅cos(2π⋅fT⋅t).
The transmission channel exhibits linear distortions:
- While the lower sideband (LSB frequency: fT−fN) and the carrier are transmitted undistorted,
- the upper sideband (USB-Frequenz: fT+fN) is weighted with the attenuation factor α_{\rm O} = 0.25 .
The graph shows the locus curve, i.e., the representation of the equivalent low-pass signal r_{\rm TP}(t) in the complex plane.
Evaluating the signal r(t) with an ideal envelope demodulator, we obtain a sink signal v(t), which can be approximated as follows:
- v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )-\text{ ...}
For this measurement, the message frequency f_{\rm N} = 2 \ \rm kHz was used.
In subtask (7) the signal-to-noise power ratio \rm (SNR) should be calculated as follows:
- \rho_{v } = \frac{P_{v 1}}{P_{\varepsilon }} \hspace{0.05cm}.
Here, P_{v1} = α^2 · P_q and P_ε denote the "powers" of both signals:
- v_1(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},
- \varepsilon(t) = v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.
Hints:
- This exercise belongs to the chapter Envelope Demodulation.
- Particular reference is made to the page Description using the equivalent low-pass signal.
Questions
Solution
- r_{\rm TP}(t) = A_{\rm T} + \frac{A_{\rm N}}{2} \cdot \alpha_{\rm O} \cdot{\rm e}^{{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t} + \frac{A_{\rm N}}{2} \cdot{\rm e}^{-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm N}\cdot t}\hspace{0.05cm}.
- At time t = 0 all vectors point in the direction of the real axis.
- Thus r_{\rm TP}(t = 0)\hspace{0.15cm}\underline { = 15 \ \rm V} can be read from the graph on the exercise page.
(2) The carrier amplitude is defined by the center of the ellipse:
A_{\rm T}\hspace{0.15cm}\underline { = 10 \ \rm V}.
- From the equation given in the first subtask, the amplitude A_{\rm N} can thus also be calculated:
- \frac{A_{\rm N}}{2} \cdot ( 1+ \alpha_0) = r_{\rm TP}(t= 0) - A_{\rm T} = 5 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} \hspace{0.15cm}\underline {= 8 \,{\rm V}} \hspace{0.05cm}.
- The point marked (2) can be used as a check:
- \frac{A_{\rm N}}{2} \cdot ( 1- \alpha_0) = 3 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm N} = 8 \,{\rm V} \hspace{0.05cm}.
(3) The necessary time for one cycle t t_1 is equal to the period of the source signal, i.e.,
- t_1= 1/f_{\rm N} \hspace{0.15cm}\underline {=0.5 \ \rm ms}.
(4) Since the lower sideband is larger than the upper sideband, the peak of the pointer composite moves clockwise around the ellipse.
- Point (2) is first reached at time t_2 = 3/4 · t_1\hspace{0.15cm}\underline { = 0.375 \ \rm ms} .
(5) The pointer length at time t_2 can be determined with the Pythagorean Theorem :
- a(t = t_2) = \sqrt{(10 \,{\rm V})^2 + (3 \,{\rm V})^2}\hspace{0.15cm}\underline { = 10.44 \,{\rm V}}\hspace{0.05cm}.
- The phase function is:
- \phi(t = t_2) = {\rm arctan} \frac{3 \,{\rm V}}{10 \,{\rm V}} \hspace{0.15cm}\underline {= 16.7^{\circ}}\hspace{0.05cm}.
- The maximum phase ϕ_{\rm max} is slightly larger. It occurs (with a positive sign) at time t_3 < t_2 when a straight line from the origin is tangent to the ellipse.
- By setting up the ellipse equation, this point (x_3, y_3) can be accurately calculated analytically.
- From this, the following would hold for the maximum phase:
- \phi_{\rm max} = {\rm arctan} \ {y_3}/{x_3} \hspace{0.05cm}.
(6) The distortion factors of second and third order can be obtained from the given equation for nbsp; v(t) (valid for f_{\rm N} = 2 \ \rm kHz) , and are:
- K_2 = \frac{0.148 \,{\rm V}}{2.424 \,{\rm V}} = 0.061, \hspace{0.3cm} K_3 = \frac{0.056 \,{\rm V}}{2.424 \,{\rm V}} = 0.023 \hspace{0.05cm}.
- Thus for the total distortion factor we get:
- K = \sqrt{K_2^2 + K_3^2 }\hspace{0.15cm}\underline { \approx 6.6 \%}.
(7) Frot he power of the useful signal and the interference signal, we obtain:
- P_{v 1} = \frac{(2.424 \,{\rm V})^2}{2} = 2.94 \,{\rm V}^2\hspace{0.05cm},\hspace{0.3cm} P_{\varepsilon} = \frac{(-0.148 \,{\rm V})^2}{2} + \frac{(0.056 \,{\rm V})^2}{2}= 0.0125 \,{\rm V}^2\hspace{0.05cm}
- This gives the signal-to-noise power ratio \rm (SNR):
- \rho_{v} = \frac{P_{v 1}}{P_{\varepsilon }}= \frac{(2.94 \,{\rm V})^2}{0.0125 \,{\rm V}^2} \hspace{0.15cm}\underline {\approx 230} = \frac{1}{K^2} \hspace{0.05cm}.
- If, on the other hand, the amplitude distortion were also assigned to the error signal, we would arrive at a much smaller \rm SNR.
- When P_q = A_{\rm N}^2/2 = 8 \ \rm V^2 and P_{\varepsilon}\hspace{0.02cm}' = \overline{(v(t)-q(t))^2} = {1}/{2}\cdot ( 4 \,{\rm V} - 2.424 \,{\rm V})^2 + P_{\varepsilon}= 1.254 \,{\rm V}^2 one would get:
- \rho_{v }\hspace{0.02cm}' = \frac{8 \,{\rm V}^2}{1.254 \,{\rm V}^2} \approx 6.4\hspace{0.05cm}.
(8) All calculations are valid regardless of the message frequency f_{\rm N} if the attenuation factor of the upper sideband remains at α_{\rm O} = 0.25 .
- Thus, the same distortion factor K\hspace{0.15cm}\underline { \approx 6.6 \%} is obtained even for f_{\rm N} = 4 \ \rm kHz .