Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.15Z: Block Error Probability once more

From LNTwww
Revision as of 18:39, 1 November 2022 by Guenter (talk | contribs)

Binominal probabilities

Using a Reed–Solomon code with the correctability  t  and  "Bounded Distance Decoding"    (BDD)  is obtained with

  • the code word length  n  and
  • the symbol falsification probability  εS


for the block error probability:

{\rm Pr(block\:error)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.

In this exercise,  the block error probability for the  \rm RSC \, (7, \, 3, \, 5)_8  and various  \varepsilon_{\rm S}  values shall be calculated and approximated.

  • The graph shows the probabilities of the binomial distribution for parameters  n = 7  ("code word length") and  \varepsilon_{\rm S} = 0.25  ("symbol falsification probability").



Hints:



Questions

1

What is the block error probability for  \varepsilon_{\rm S} = 10^{-1}?

\rm Pr(block\:error) \ = \

\ \cdot 10^{-2}

2

What is the block error probability for  \varepsilon_{\rm S} =10^{-2}?

\rm Pr(block\:error) \ = \

\ \cdot 10^{-5}

3

What result is obtained for  \varepsilon_{\rm S} =10^{-2},  considering only the term  f = t + 1 ?

\rm Approximation \text{:} \hspace{0.2cm} Pr(block\:error) \ \approx \

\ \cdot 10^{-5}

4

What result is obtained approximately for  \varepsilon_{\rm S} = 10^{-3}?

\rm Pr(block\:error) \ \approx \

\ \cdot 10^{-8}

5

What  \varepsilon_{\rm S}  is needed for the block error probability  10^{-10}?

\varepsilon_{\rm S} \ = \

\ \cdot 10^{-4}


Solution

(1)  For the  \rm RSC \, (7, \, 3, \, 5)_8,  because  d_{\rm min} = 5 \ \Rightarrow \ t = 2  gives the block error probability:

{\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f}
\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 \hspace{0.05cm}.
  • According to this calculation,  five terms would have to be considered.  However,  since
{\rm Pr(block\:error)} = \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1
is also valid,  the following calculation is faster:
{\rm Pr(block\:error)} =1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} \hspace{0.05cm}.


(2)  Analogous to the subtask  (1)  one obtains here:

{\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 \hspace{0.05cm}.
  • This means:   For the probability  \varepsilon_{\rm S} = 0.01  the simplified calculation is very error-prone,  because a value close to  1  results for the bracket expression.
  • The full calculation yields here:
{\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ {7 \choose 7} \cdot 0.01^7
\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)}= 10^{-6} \cdot \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} \hspace{0.05cm}.


(3)  From the sample solution to the subtask  (2)  the result can be read directly:

{\rm Pr(block\:error)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} \hspace{0.05cm}.
  • The relative error is about  -1\%.
  • The minus sign indicates that this is only an approximation and not a bound:  The approximate value is slightly smaller than the actual value.


(4)  Restricting to the relevant term  (f = 3),  we get  \varepsilon_{\rm S} = 0.001:

{\rm Pr(block\:error)} \approx {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} \hspace{0.05cm}.
  • The relative error here is only about  -0.1\%.


(5)  According to the derived approximation,  the following holds for the considered code:

{\rm Pr(block\:error)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.