Contents
Beschreibung im Frequenzbereich (1)
Wir betrachten die folgende Aufgabenstellung: Ein Nachrichtensignal $q(t)$, dessen Spektrum $Q(f)$ auf den Bereich $\pm B_{\rm NF}$ bandbegrenzt ist, soll mit Hilfe einer harmonischen Schwingung der Frequenz $f_{\rm T}$, die wir im Weiteren als Trägersignal $z(t)$ bezeichnen, in einen höherfrequenten Bereich verschoben werden, in dem der Kanalfrequenzgang $H_{\rm K}(f)$ günstige Eigenschaften aufweist.
Die Grafik verdeutlicht die Aufgabenstellung, wobei folgende vereinfachende Annahmen getroffen sind:
- Das gezeichnete Spektrum $Q(f)$ ist hier schematisch zu verstehen. Es besagt, dass in $q(t)$ nur Spektralanteile im Bereich $|f| ≤ B_{\rm NF}$ enthalten sind. $Q(f)$ könnte auch ein Linienspektrum sein.
- Der Kanal sei in einem Bereich der Bandbreite $B_{\rm K}$ um die Frequenz $f_{\rm M}$ ideal, das heißt, es gelte $H_{\rm K}(f) =$ 1 für $|f – f_{\rm M}| ≤ B_{\rm K}/2.$ Rauschstörungen werden vorerst nicht betrachtet.
- Das Trägersignal sei cosinusförmig (Phase $ϕ_T =$ 0) und besitze die Amplitude $A_{\rm T} =$ 1 (ohne Einheit). Die Trägerfrequenz $f_{\rm T}$ sei gleich der Mittenfrequenz des Übertragungsbandes.
- Das Spektrum des Trägersignals $z(t) = \cos(ω_{\rm T} · t)$ lautet somit (in der Grafik grün eingezeichnet):
$$Z(f) = \frac{1}{2} \cdot \delta (f + f_{\rm T})+\frac{1}{2} \cdot \delta (f - f_{\rm T})\hspace{0.05cm}.$$
Beschreibung im Frequenzbereich (2)
Wer mit den Gesetzmäßigkeiten der Spektraltransformation und insbesondere mit dem Faltungssatz vertraut ist, kann sofort eine Lösung für das Spektrum $S(f)$ des Modulatorausgangssignals angeben: $$\begin{align*} S(f) & = Z(f) \star Q(f) = \frac{1}{2} \cdot \delta (f + f_{\rm T})\star Q(f)+\frac{1}{2} \cdot \delta (f - f_{\rm T})\star Q(f)\\ & = \frac{1}{2} \cdot Q (f + f_{\rm T})+\frac{1}{2} \cdot Q(f - f_{\rm T}) \hspace{0.05cm}.\end{align*}$$
Bei dieser Gleichung ist berücksichtigt, dass die Faltung einer verschobenen Diracfunktion $δ(x – x_0)$ mit einer beliebigen Funktion $f(x)$ die verschobene Funktion $f(x – x_0)$ ergibt.
Die Grafik zeigt das Ergebnis. Man erkennt folgende Charakteristika:
- Aufgrund der systemtheoretischen Betrachtungsweise mit positiven und negativen Frequenzen setzt sich $S(f)$ aus zwei Anteilen um $\pm f_{\rm T}$ zusammen, die jeweils formgleich mit $Q(f)$ sind.
- Der Faktor 1/2 ergibt sich wegen der Trägeramplitude $A_{\rm T} =$ 1. Somit ist $s(t = 0)$ gleich $q(t = 0)$, so dass auch die Integrale über deren Spektralfunktionen $S(f)$ bzw. $Q(f)$ gleich sein müssen.
- Die Kanalbandbreite $B_{\rm K}$ muss mindestens doppelt so groß sein wie die Signalbandbreite $B_{\rm NF}$, was zu der Namensgebung Zweiseitenband–Amplitudenmodulation (ZSB–AM) geführt hat.
- Zu beachten ist, dass $B_{\rm NF}$ und $B_K$ absolute und nicht etwa äquivalente Bandbreiten sind. Letztere sind über flächengleiche Rechtecke definiert und werden im Tutorial mit $Δf_q$ bzw. $Δf_{\rm K}$ bezeichnet.
- Die Spektralfunktion $S(f)$ beinhaltet keine Diraclinien bei der Trägerfrequenz $(\pm f_{\rm T})$. Deshalb wird das hier beschriebene Verfahren auch als ZSB–AM ohne Träger bezeichnet.
- Die Frequenzanteile oberhalb der Trägerfrequenz $f_{\rm T}$ nennt man das obere Seitenband (OSB), diejenigen unterhalb von $f_{\rm T}$ bezeichnet man als das untere Seitenband (USB).
Beschreibung im Zeitbereich (1)
Der Faltungssatz lautet mit der auf dieses Problem angepassten Nomenklatur: $$S(f) = Z(f) \star Q(f)\hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} s(t) = q(t) \cdot z(t) = q(t) \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})\hspace{0.05cm}.$$ Dieses Ergebnis stimmt auch dann noch, wenn die auf der letzten Seite getroffenen Einschränkungen (reellwertiges Spektrum $Q(f)$, Trägerphase $ϕ_{\rm T} =$ 0) aufgehoben werden. Im Allgemeinen ergibt sich somit eine komplexwertige Spektralfunktion $S(f)$.
Nach dieser Gleichung kann man zwei Modelle für die Zweiseitenband–Amplitudenmodulation angeben. Diese sind wie folgt zu interpretieren:
- Das erste Modell beschreibt direkt den oben angegebenen Zusammenhang, wobei hier der Träger $z(t) = \cos(ω_{\rm T}t + ϕ_{\rm T})$ ohne Einheit angesetzt ist.
- Das zweite Modell entspricht eher den physikalischen Gegebenheiten, nachdem jedes Signal auch eine Einheit besitzt. Sind $q(t)$ und $z(t)$ jeweils Spannungen, so ist im Modell noch eine Skalierung mit der Modulatorkonstanten $K_{\rm AM}$ (Einheit: ${\rm V^{–1} }$) vorzusehen, damit auch das Ausgangssignal $s(t)$ einen Spannungsverlauf darstellt.
- Wählt man $K_{\rm AM} = 1/A_{\rm T}$, so sind beide Modelle gleich. Im Folgenden werden wir stets vom ersten, also dem einfacheren Modell ausgehen.
Beschreibung im Zeitbereich (2)
Die beiden Grafiken zeigen in roter Farbe die Sendesignale $s(t)$ bei ZSB–AM für zwei unterschiedliche Trägerfrequenzen. Das in beiden Fällen gleiche Quellensignal $q(t)$ mit der Bandbreite $B_{\rm NF} =$ 4 kHz ist durchgehend blau gezeichnet und das Signal – $q(t)$ gestrichelt.
Das Trägersignal $z(t)$ hat in beiden Fällen einen cosinusförmigen Verlauf. Für das obere Bild wurde die Trägerfrequenz $f_{\rm T} =$ 20 kHz zugrundegelegt und für das untere Bild $f_{\rm T} =$ 100 kHz.
Ringmodulator (1)
Eine Möglichkeit zur Realisierung der „Zweiseitenband–Amplitudenmodulation mit Trägerunterdrückung” bietet der sog. Ringmodulator, der auch unter der Bezeichnung Doppelgegentakt–Diodenmodulator bekannt ist. Nachfolgend sehen Sie links die Schaltung und rechts ein einfaches Funktionsschaltbild.
Ohne Anspruch auf Vollständigkeit kann das Prinzip wie folgt dargestellt werden:
- Die Amplitude der harmonischen Trägerschwingung $z(t)$ sei sehr viel größer als der Maximalwert $q_{\rm max}$ des Nachrichtensignals $q(t)$. Somit werden alle Dioden als Schalter betrieben.
- Bei positiver Halbwelle der Trägerschwingung $(z(t)$ > 0) leiten die zwei magentafarbenen Dioden, während die olivfarbenen sperren. Ohne Berücksichtigung von Verlusten gilt somit $s(t) = q(t)$.
- Bei negativer Halbwelle leiten die olivfarbenen Dioden und die Dioden in den Längszweigen sperren. Wie aus dem rechten Bild hervorgeht, gilt bei dieser unteren Schalterstellung $s(t) = \ – q(t)$.
- Wegen des Schalterbetriebs kann die harmonische Schwingung $z(t)$ auch durch ein periodisches Rechtecksignal gleicher Periodendauer ersetzt werden:
$$z_{\rm R}(t) = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {z(t) >0,} \\ {z(t) <0.} \\ \end{array}$$
- Das modulierte Signal $s(t)$ ergibt sich dann als das Produkt des Nachrichtensignals $q(t)$ mit diesem Rechtecksignal $z_{\rm R}(t)$, während bei idealer ZSB–AM mit einem Cosinussignal multipliziert wird.
- Der Träger $z(t)$ selbst ist im Signal $s(t)$ nicht enthalten. Da dieser über die Mittelanzapfungen der Übertrager zugeführt wird, heben sich die induzierten Spannungen auf („ZSB–AM ohne Träger”).
Im nächsten Abschnitt wird die Wirkungsweise des Ringmodulators anhand beispielhafter Signalverläufe nochmals beschrieben.