Envelope Demodulation

From LNTwww

Funktionsweise bei idealen Bedingungen

Wir gehen zunächst von folgenden Voraussetzungen aus:

  • Das Quellensignal $q(t)$ sei gleichsignalfrei und betragsmäßig auf $q_{\rm max}$ begrenzt.
  • Die Übertragung basiert auf dem Modulationsverfahren „ZSB–AM mit Träger”. Zur einfacheren Darstellung wird die Trägerphase ohne Einschränkung der Allgemeingültigkeit $\mathbf{ϕ_{\rm T} } =$ 0 gesetzt:

$$s(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$

  • Der Modulationsgrad sei $m$ ≤ 1. Aus der Definition $m = q_{\rm max}/A_{\rm T}$ folgt somit auch $q(t) + A_{\rm T}$ ≥ 0.
  • Der Kanal sei ideal, das heißt, es gibt keine Verzerrungen, keine Dämpfung, keine Laufzeit und keine (Rausch–) Störungen. Mit $H_{\rm K}(f) =$ 1 und $n(t) =$ 0 erhält man somit für das Empfangssignal:

$$r(t) = s(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$

  • In dieser Gleichung bezeichnet $a(t)$ die Hüllkurve von $r(t)$. Die Phasenfunktion $\mathbf{ϕ}(t)$ ist 0.


Ein Hüllkurvendemodulator detektiert die Hüllkurve $a(t)$ seines Eingangssignals $r(t)$ und gibt diese nach Eliminierung des Gleichanteils $A_{\rm T}$ als Sinkensignal aus: $$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$ Die Entfernung des Gleichanteils $A_{\rm T}$ kann beispielsweise durch einen Hochpass realisiert werden, der alle Frequenzen bis auf $f =$ 0 ungehindert passieren lässt.


Sind alle obigen Voraussetzungen erfüllt, so gilt $υ(t) = q(t)$. Das bedeutet, dass mit einem (idealen) Hüllkurvendemodulator durchaus ein ideales Nachrichtenübertragungssystem realisiert werden kann.


Unten sehen Sie das Empfangssignal $r(t) = s(t)$, wobei „ZSB–AM mit Träger” zugrunde liegt (Modulationsgrad $m =$ 0.5). Die vom Hüllkurvendemodulator auszuwertende Hüllkurve $a(t)$ ist gleich der Summe aus dem Quellensignal $q(t)$ und dem beim Sender zugesetzten Gleichanteil $A_{\rm T}$.


Signalverläufe zur Verdeutlichung der Hüllkurvendemodulation


Für das Demodulatorausgangssignal nach Eliminierung des Gleichanteils $A_{\rm T}$ mit einem Hochpass gilt $υ(t) = q(t)$, vorausgesetzt, dass das Quellensignal $q(t)$ keinen Gleichanteil beinhaltet hat. Ein solcher würde durch den Hochpass ebenfalls entfernt.

Realisierung eines Hüllkurvendemodulators (1)

rechts Die nebenstehende Schaltung zeigt eine einfache Realisierungsmöglichkeit des Hüllkurvendemodulators.

Darunter sehen Sie die Signale $r(t)$ und $w(t)$ zur Verdeutlichung des Prinzips.

Betrachten Sie zunächst den mit $T = T_{\rm opt}$ bezeichneten mittleren Signalausschnitt.


Der erste Schaltungsteil – bestehend aus einer Diode und der Parallelschaltung eines Widerstands $R$ und einer Kapazität $C$ – erfüllt folgende Aufgaben:

  • Ist das grau gezeichnete Signal $r(t)$ größer als die Spannung $w(t)$ an $R$ und $C$, so leitet die Diode, es gilt $w(t) = r(t)$ und die Kapazität $C$ wird aufgeladen. Diese Bereiche sind grün markiert.
  • Gilt $r(t) < w(t)$ wie zu den violett markierten Zeiten, so sperrt die Diode und die Kapazität entlädt sich über den Widerstand $R$. Das Signal fällt exponentiell mit der Zeitkonstanten $T = R · C$ ab.
  • Ab den mit Kreisen markierten Zeitpunkten gilt wieder $r(t) > w(t)$ und die Kapazität wird wieder aufgeladen. Man erkennt aus der Skizze, dass $w(t)$ in etwa mit der Hüllkurve $a(t)$ übereinstimmt.
  • Die Abweichungen zwischen $w(t)$ und $a(t)$ sind um so geringer, je größer die Trägerfrequenz im Vergleich zur Nachrichtenfrequenz ist. Als Richtwert wird oft $f_{\rm T} ≥ 100 · B_{\rm NF}$ angegeben.
  • Gleichzeitig sollte die Zeitkonstante $T$ stets sehr viel größer als $1/f_{\rm T}$ und sehr viel kleiner als $1/B_{\rm NF}$ sein. Ein guter Kompromiss ist das geometrische Mittel zwischen beiden Grenzen:

$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T \hspace{0.1cm} \ll \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, \hspace{2cm} T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF}}} \hspace{0.05cm}.$$

  • Ist die Zeitkonstante $T$ zu klein wie im linken Bereich obiger Skizze, so wird der Kondensator stets zu schnell entladen und die Differenz $w(t) – a(t)$ unnötig groß.
  • Auch ein zu großer Wert $T > T_{\rm opt}$ führt zu einer Verschlechterung, wie im rechten Signalausschnitt dargestellt. In diesem Fall kann $w(t)$ der Hüllkurve $a(t)$ nicht mehr folgen.


Bei einer NF–Bandbreite von 5 kHz sollte die Trägerfrequenz mindestens 500 kHz gewählt werden. Die Zeitkonstante $T$ muss sehr viel größer als $1/f_{\rm T} =$ 2 μs und gleichzeitig sehr viel kleiner als $1/B_{\rm NF} =$ 200 μs sein. Der optimale Wert entsprechend der Kompromissformel ist dann: $$T_{\rm opt} = {1}/{\sqrt{5 \cdot 10^5 \, {\rm Hz}\cdot 5 \cdot 10^3 \, {\rm Hz}}} = 20 \, \mu s \hspace{0.05cm}.$$

Realisierung eines Hüllkurvendemodulators (2)

Die folgende Grafik verdeutlicht die Wirkungsweise des Hüllkurvendemodulators im Frequenzbereich:


Beschreibung des Hüllkurvendemodulators im Frequenzbereich


Das Spektrum $W(f)$ des Signals $w(t)$ an der $RC$–Parallelschaltung unterscheidet sich vom Spektrum $Q(f)$ des Quellensignals wie folgt:

  • Aufgrund des beim Sender zugesetzten Trägersignals $z(t)$ beinhaltet die Spektralfunktion $W(f)$ eine Diraclinie bei $f =$ 0 mit dem Gewicht $A_{\rm T}$ (Trägeramplitude).
  • $W(f)$ weist zudem auch Spektralanteile im Bereich um die Trägerfrequenz $f_{\rm T}$ auf, die sich mit dem gezackten Zeitverlauf $w(t)$ erklären lassen (siehe Grafik im letzten Abschnitt).
  • Auch im NF–Bereich unterscheidet sich $W(f)$ gegenüber $Q(f)$ geringfügig. Der Fehler wird dabei um so geringer sein, je größer die Trägerfrequenz im Vergleich zur NF-Bandbreite ist.


Während die zwei erstgenannten Signalverfälschungen durch den Hochpass und den Tiefpass eliminiert werden, bleibt die geringfügige Abweichung zwischen dem Sinkensignal $υ(t)$ und dem Quellensignal $q(t)$ im Bereich 0 $< f < B_{\rm NF}$ erhalten, wie aus dem Vergleich von $V(f)$ und $Q(f)$ hervorgeht.

Anwendung der Hüllkurvendemodulation bei $m > 1$

Die nachfolgende Grafik zeigt die ZSB–AM–Signale für $m =$ 0.5 und $m =$ 2.


Hüllkurvendemodulation mit m > 1


Aus dieser Darstellung erkennt man folgende Unterschiede:

  • Solange der Modulationsgrad $m$ ≤ 1 ist, gilt für die Hüllkurve des Bandpass–Signals:

$$a(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$

Hier ist mit dem Hüllkurvendemodulator eine ideale Demodulation möglich: $υ(t) = q(t)$.
  • Dagegen gilt bei $m$ > 1 folgender Zusammenhang:

$$a(t) = | q(t) + A_{\rm T}|\hspace{0.05cm}.$$

Hier führt die Hüllkurvendemodulation stets zu nichtlinearen Verzerrungen. Das Sinkensignal $υ(t)$ wird nun auch neue Frequenzen beinhalten, die in $q(t)$ nicht vorhanden waren.
  • Für den Gleichanteil (Erwartungswert) der Hüllkurve gilt:

$${\rm E}[a(t)] \ne A_{\rm T}\hspace{0.05cm}.$$

Da nun dieser Gleichanteil ${\rm E}[a(t)]$ anstelle von $A_{\rm T}$ durch den Hochpass entfernt wird, kommt es zusätzlich zu einer Pegelverschiebung.

Beschreibung mit Hilfe des äquivalenten TP–Signals (1)

Insbesondere dann, wenn das Quellensignal $q(t)$ als Summe von harmonischen Schwingungen dargestellt werden kann, ist eine Signalbeschreibung mit dem äquivalenten TP–Signal $|r_{\rm TP}(t)|$ äußerst vorteilhaft. Dieses wurde im Kapitel 4.3 des Buches „Signaldarstellung” ausführlich beschrieben.

Lässt man Rauschen/Störungen außer Betracht, so kann für das Empfangssignal geschrieben werden: $$r(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t + \phi(t))\hspace{0.05cm}.$$

Diese Gleichung gilt für jede Form der Amplitudenmodulation bei unterschiedlichen Randbedingungen:

  • Zweiseitenband (ZSB) oder Einseitenband (ESB),
  • mit oder ohne Träger,
  • idealer Kanal oder linear verzerrender Kanal.


Das dazugehörige äquivalente TP–Signal ist im allgemeinen Fall komplex und lautet: $$r_{\rm TP}(t) = a(t) \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.05cm} \phi(t)}\hspace{0.05cm}.$$

Die in den Gleichungen enthaltenen Zeitfunktionen $a(t)$ und $\mathbf{ϕ}(t)$ sind bei beiden Darstellungen identisch:

  • $a(t)$ beschreibt die Hüllkurve (zeitabhängige Amplitude) des physikalischen Signals $r(t)$ bzw. den Betrag $|r_{\rm TP}(t)|$ des äquivalenten TP–Signals. Dieser wird bei Hüllkurvendemodulation detektiert.
  • $\mathbf{ϕ}(t)$ ist die zeitabhängige Phase. Diese Funktion beinhaltet alle Informationen über die Lage der Nulldurchgänge von $r(t)$ und gibt an, ob eine zusätzliche Phasenmodulation wirksam ist.

Beschreibung mit Hilfe des äquivalenten TP–Signals (2)

Im Fall der Zweiseitenband–Amplitudenmodulation gilt bei idealem Kanal:

  • Die Ortskurve – darunter versteht man die zeitabhängige Darstellung des Signals $r_{\rm TP}(t)$ in der komplexen Ebene – ist eine horizontale Gerade auf der reellen Achse.
  • Daraus folgt weiter, dass die Phasenfunktion nur die zwei Werte 0 und π (180°) annehmen kann. Bei $m$ ≤ 1 ist ${\mathbf ϕ}(t) ≡$ 0 und die Hüllkurvendemodulation ist verzerrungsfrei anwendbar.
  • Dagegen liegt bei einem Modulationsgrad $m$ > 1 ein Teil der Ortskurve in der linken Halbebene, und es kommt es bei Anwendung der Hüllkurvendemodulation zu nichtlinearen Verzerrungen.


Das Quellensignal $q(t)$ kann alle Werte zwischen ±1 V annehmen. Durch Zusetzen eines Gleichanteils von $A_{\rm T} =$ 2 V ergibt sich eine ZSB–AM mit dem Modulationsgrad $m =$ 0.5, deren Ortskurve in der linken Grafik zu sehen ist. Zu allen Zeiten liegt $r_{\rm TP}(t)$ in der rechten Halbebene und die Zeigerlänge verändert sich entsprechend dem Nachrichtensignal $q(t)$.


Ortskurven zur Beschreibung der Hüllkurvendemodulation


Die rechte Grafik beschreibt die Ortskurve für $A_{\rm T} =$ 0.5 V bzw. $m =$ 2. Nun kann $r_{\rm TP}(t)$ alle reellen Werte zwischen –0.5 V und 1.5 V annehmen. Da der Hüllkurvendemodulator jedoch nicht zwischen positiven und negativen Werten unterscheiden kann, kommt es zu nichtlinearen Verzerrungen.

Die entsprechenden physikalischen Signale $q(t), r(t)$ sowie $υ(t)$ zu diesem Beispiel finden Sie in der Grafik in diesem Kapitel im dritten Abschnitt.