Contents
- 1 Unterschiede zwischen analogen und digitalen Modulationsverfahren
- 2 ASK – Amplitude Shift Keying
- 3 Kohärente Demodulation von ASK–Signalen (1)
- 4 Kohärente Demodulation von ASK–Signalen (2)
- 5 Inkohärente Demodulation von ASK–Signalen
- 6 BPSK – Binary Phase Shift Keying
- 7 Demodulation und Detektion von BPSK–Signalen
Unterschiede zwischen analogen und digitalen Modulationsverfahren
Die Grafik zeigt oben ein analoges Übertragungssystem und darunter gezeichnet ein Digitalsystem.
Die wesentlichen Unterschiede sind rot hervorgehoben:
- Während beim oberen System am Modulatoreingang das analoge Quellensignal q(t) anliegt, ist beim unteren Digitalsystem das modulierende Signal qD(t) ein Digitalsignal, gekennzeichnet durch die Amplitudenkoeffizienten a_ν, den Grundimpuls g_q(t) sowie die Symboldauer T:
q_{\rm D}(t) = \sum_{\nu=-\infty}^{+\infty}a_\nu \cdot g_q(t - \nu \cdot T) \hspace{0.05cm}.
- Die A/D–Wandlung kann z. B. mittels Pulscodemodulation erfolgen und umfasst die Funktionen Abtastung, Quantisierung, Binärcodierung und Signalformung. Der Grundimpuls g_q(t) wird im Folgenden meist als NRZ–rechteckförmig mit Amplitude s_0 und Dauer T angenommen, so dass für die Spektralfunktion G_q(f) = s_0 · T · {\rm si}(π f T) mit {\rm si}(x) = \sin(x)/x gilt.
- Die Modulatoren können bei beiden Systemen durchaus gleich sein. Sie verändern einen der drei Signalparameter des Trägersignals z(t) entsprechend dem Modulatoreingangssignal. Die digitalen Varianten von AM, PM und FM heißen Amplitude Shift Keying (ASK), Phase Shift Keying (PSK) und Frequency Shift Keying (FSK).
- Dagegen unterscheidet sich der Demodulator des Digitalsystems grundsätzlich von einem analogen Demodulator durch die erforderliche Entscheiderkomponente (in Hardware oder Software). Das Ausgangssignal υ_{\rm D}(t) ist ebenso wie q_{\rm D}(t) digital. Dieses Signal muss anschließend noch in das analoge Sinkensignal υ(t) D/A–gewandelt werden.
- Das entscheidende Gütekriterium ist bei beiden Systemen das Sinken–SNR als der Quotient der Leistungen von Quellensignal q(t) und Fehlersignal ε(t) = υ(t) \ – \ q(t). Bei einem Digitalsystem begnügt man sich meist mit dem Qualitätsmerkmal Bitfehlerquote (engl.: Bit Error Rate, BER), das sich auf die beiden Digitalsignale q_{\rm D}(t) und υ_{\rm D}(t) bezieht. Diese ist in ein SNR umrechenbar.
ASK – Amplitude Shift Keying
Die Grafik zeigt das digitale Quellensignal q(t) – auf den Index „D” wird ab sofort verzichtet – sowie das ASK–Sendesignal s_{\rm ASK}(t) = q(t) · \sin(2π · f_{\rm T} · t), wobei hier von unipolaren Amplitudenkoeffizienten a_ν ∈ {0, 1} und einem sinusförmigen Träger ausgegangen wird. Dieses Verfahren wird insbesondere bei optischen Übertragungssystemen eingesetzt (da es bekanntlich keine negativen Lichtimpulse gibt) und ist auch unter der Bezeichnung On–Off–Keying bekannt.
In der rechten Bildhälfte sind – allerdings nicht maßstäblich – die dazugehörigen Leistungsdichtespektren (abgekürzt: LDS) dargestellt. Bei rechteckförmigem Grundimpuls g_q(t) und gleichwahrscheinlichen unipolaren Amplitudenkoeffizienten gilt:
\begin{align*}{{\it \Phi}_{q}(f)}& = \frac{{s_0}^2 \cdot T}{4} \cdot {\rm si}^2 (\pi f T) + \frac{{s_0}^2 }{4} \cdot \delta (f)\hspace{0.05cm},\\ {{\it \Phi}_{s}(f)}& = \frac{1}{4} \cdot \left [ {{\it \Phi}_{q}(f- f_{\rm T})}+ {{\it \Phi}_{q}(f+ f_{\rm T})}\right]\hspace{0.05cm}.\end{align*}
Zu diesen Gleichungen ist zu bemerken:
- Der Gleichanteil m_q = s_0/2 des Quellensignals führt im Leistungsdichtespektrum ϕ_q(f) zu einer Diracfunktion bei der Frequenz f = 0 mit dem Gewicht {s_0}^2/4.
- Das Leistungsdichtespektrum des ASK–Sendesignals ist gleich ϕ_s(f) = ϕ_q(f) ∗ ϕ_z(f), wobei sich das LDS ϕ_z(f) des Trägersignals Z(t) aus zwei Diracfunktionen bei ±f_{\rm T} mit jeweiligem Gewicht 1/4 zusammensetzt. Die Gleichung gilt auch bei anderer Trägerphase, „∗” beschreibt die Faltung.
- Das Leistungsdichtespektrum ϕ_s(f) ist bis auf die Verschiebung um ±f_{\rm T} formgleich mit ϕ_q(f). Deshalb gehört ASK zu den linearen digitalen Modulationsverfahren.
Kohärente Demodulation von ASK–Signalen (1)
Die Grafik zeigt das Blockschaltbild eines ASK–Systems inklusive der Empfängerkomponenten. Das Quellensignal q(t) sei NRZ–rechteckförmig und unipolar, das heißt, es gilt a_ν ∈ {0, 1}. Der Kanal sei zunächst ideal, gekennzeichnet durch H_{\rm K}(f) = 1 und n(t) = 0 ⇒ r(t) = s(t).
Die Demodulation erfolgt hier kohärent mittels Synchrondemodulator, dessen Funktionsweise bereits bei den analogen Modulationsverfahren AM und PM beschrieben wurde.
Zusammenfassend lässt sich sagen:
- Beim Empfänger wird das gleiche Trägersignal zugesetzt wie beim Sender, jedoch mit doppelter Amplitude. z(t) bezeichnet den Träger beim Sender und 2 · z(t) den Träger beim Empfänger.
- Nach der Multiplikation folgt ein geeignet dimensionierter Tiefpass mit dem Frequenzgang H_{\rm E}(f), der die höherfrequenten Anteile des Signals b(t) entfernt.
- Schließlich wird das Detektionssignal d(t) zu den Detektionszeitpunkten ν · T abgetastet und mit Hilfe eines Schwellenwertentscheiders mit der Entscheiderschwelle E = {s_0}/2 entschieden.
- Das Sinkensignal υ(t) am Ausgang des Entscheiders ist rechteckförmig und im rauschfreien Fall (oder bei nur kleinen Rauschstörungen) bis auf die Laufzeit T/2 gleich dem Quellensignal q(t).
Zu beachten ist: Eine kohärente Demodulation erfordert, dass dem Empfänger die Trägerfrequenz f_{\rm T} und die Trägerphase ϕ_{\rm T} exakt bekannt sind. Der Empfänger muss diese beiden Größen aus dem Empfangssignal r(t) extrahieren, was bei starken Kanalverzerrungen und großen Rauschstörungen durchaus aufwändig sein kann. Solche Realisierungsaspekte werden zum Beispiel in der Aufgabe A4.8 zu diesem Kapitel behandelt.
Kohärente Demodulation von ASK–Signalen (2)
Die Grafik zeigt die im ASK–Blockschaltbild genannten Signale bei idealem Kanal: H_{\rm K}(f) = 1, n(t) = 0.
Die einzelnen Signalverläufe können wie folgt interpretiert werden:
- Das Sendesignal s(t) ist das Produkt aus dem unipolaren Quellensignal q(t) und dem Trägersignal z(t) = \sin(2πf_{\rm T}t), wobei hier f_{\rm T} = 4/T gilt (nur jeweils vier Schwingungen pro Symboldauer).
- Das Empfangssignal r(t) = s(t) wird zunächst mit dem Träger z_{\rm E}(t) = 2 · \sin(2πf_{\rm T}t) ⇒ doppelte Amplitude gegenüber z(t), kein Frequenz– und Phasenversatz – multipliziert. Damit ergibt sich:
b(t) = 2 \cdot z(t)\cdot r(t)= 2 \cdot z^2(t)\cdot q(t) = q(t) \cdot \left [ 1 - \cos(4\pi f_{\rm T} t)\right] \hspace{0.05cm}.
- Das TP–Filter mit dem Frequenzgang H_{\rm E}(f) = {\rm si}(πf_{\rm T}T) und dementsprechend rechteckförmiger Impulsantwort h_{\rm E}(t) formt aus dem Signal b(t) das Detektionssignal d(t) = b(t) \star h_{\rm E}(t).
- h_{\rm E}(t) ist an den rechteckförmigen Grundimpuls g_q(t) angepasst; man spricht vom sog. Matched–Filter ⇒ bestmöglicher Kompromiss zwischen Entzerrung und Rauschleistungsbegrenzung.
- Ohne Rauschen gilt d(νT) = q(νT) ∈ {0, s_0}. Bei (moderaten) Rauschstörungen ist mit großer Wahrscheinlichkeit d(νT) > s_0/2, falls a_ν = +1, und es wird d(νT) < s_0/2 für a_ν = 0 gelten.
- Der Schwellenwertentscheider gewinnt aus dem Vergleich der Detektionsabtastwerte d(νT) mit der Entscheiderschwelle E = s_0/2 das Sinkensignal υ(t), das bei fehlerfreier Entscheidung bis auf die Laufzeit T/2 identisch mit q(t) ist.
Inkohärente Demodulation von ASK–Signalen
Wir gehen weiter von ASK–Modulation sowie dem idealen (das heißt: verzerrungs–, dämpfungs– und rauschfreien) Übertragungskanal aus, so dass gilt: r(t) = s(t) = q(t) \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t + \phi_{\rm T})\hspace{0.05cm}. Weiter wird für diesen Abschnitt vorausgesetzt, dass dem Empfänger zwar die Trägerfrequenz f_{\rm T}, nicht jedoch die Trägerphase ϕ_{\rm T} bekannt ist. Üblich ist, auch diesen Demodulator als inkohärent zu bezeichnen.
Die Grafik zeigt einen solchen inkohärenten Demodulator, dessen Funktionsweise hier nur stichpunktartig angegeben werden soll. Das Demodulationsergebnisse ist unabhängig von der Trägerphase ϕ_{\rm T}, die der Empfänger nicht kennt.
- Die Signale d_1(t) und d_2(t) nach den beiden Matched–Filtern mit jeweiligen Frequenzgang H_{\rm E}(f) sind formgleich mit dem Detektionssignal d_{\rm koh}(t) entsprechend der Grafik des letzten Abschnitts, aber gegenüber diesem im Allgemeinen wegen der fehlenden Phasenanpassung gedämpft:
d_1(t) = d_{\rm koh}(t) \cdot \cos( \phi_{\rm T}), \hspace{0.2cm}d_2(t) = -d_{\rm koh}(t) \cdot \sin( \phi_{\rm T}) \hspace{0.05cm}.
- Ist der Amplitudenkoeffizient a_ν = 0, so sind im rauschfreien Fall die beiden Signalwerte d_1(ν · T) und d_2(ν · T) jeweils 0. Andernfalls (a_ν = 1) gilt für den Zeitpunkt ν · T:
d_1(\nu \cdot T) = s_{\rm 0} \cdot \cos( \phi_{\rm T}), \hspace{0.2cm}d_2(\nu \cdot T) = -s_{\rm 0} \cdot \sin( \phi_{\rm T}) \hspace{0.05cm}.
- Nach Quadrierung der zwei Teilsignale erhält man für das Summensignal:
d(\nu \cdot T) = \left\{ \begin{array}{c} 0 \\ {s_0}^2 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}a_\nu = 0, \\ {\rm falls}\hspace{0.15cm}a_\nu = 1. \\ \end{array}
- Durch die Schwellenwertentscheidung – sinnvollerweise mit der Entscheiderschwelle E = {s_0}^2/4 – können die Amplitudenkoeffizienten a_ν entschieden werden. Allerdings ergibt sich eine etwas größere Bitfehlerwahrscheinlichkeit als bei kohärenter Demodulation.
BPSK – Binary Phase Shift Keying
Bei analoger Phasenmodulation lautet das Sendesignal entsprechend Kapitel 3.1 allgemein: s_{\rm PM}(t) = s_0 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T}+ K_{\rm PM} \cdot q(t))\hspace{0.05cm}. Bei bipolarem Quellensignal ⇒ a_ν ∈ {–1, +1}, der angenommenen Trägerphase ϕ_{\rm T} = π (180°) und mit der geeignet dimensionierten Modulatorkonstanten K_{\rm PM} = π/(2s_0) ergibt sich im ν–ten Zeitintervall: s_{\rm BPSK}(t) = \left\{ \begin{array}{c} s_0 \cdot \cos(2 \pi f_{\rm T} t + \pi+ \pi/2) \\ s_0 \cdot \cos(2 \pi f_{\rm T} t + \pi- \pi/2) \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}a_\nu = +1, \\ {\rm falls}\hspace{0.15cm}a_\nu = -1. \\ \end{array} Diese Gleichung für die binäre Phasenmodulation (BPSK) lässt sich wie folgt umformen: s_{\rm BPSK}(t) = a_\nu \cdot s_0 \cdot \sin(2 \pi f_{\rm T} t ) = \left\{ \begin{array}{c} s_0 \cdot \sin(2 \pi f_{\rm T} t ) \\ -s_0 \cdot \sin(2 \pi f_{\rm T} t ) \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}a_\nu = +1, \\ {\rm falls}\hspace{0.15cm}a_\nu = -1. \\ \end{array}
In der Grafik sind die Signale und die dazugehörigen Leistungsdichtespektren skizziert. Man erkennt:
- Das BPSK–Signal lässt sich wie das ASK–Signal als Produkt von Quellensignal q(t) und Trägersignal z(t) darstellen. Der einzige Unterschied liegt in den bipolaren Amplitudenkoeffizienten a_ν ∈ {–1, +1} gegenüber den unipolaren Koeffizienten (0 oder 1) bei ASK.
- Im Gegensatz zur ASK ist bei der BPSK – wie bei jeder Form von Phasenmodulation – die Hüllkurve konstant. Die Information wird hier durch die Phasensprünge innerhalb des Sendesignals s(t) übermittelt (graue Hinterlegungen in der Grafik).
- Die Leistungsdichtespektren bei BPSK unterscheiden sich von denen bei ASK lediglich durch die fehlenden Diracfunktionen (da nun q(t) keinen Gleichanteil beinhaltet) sowie durch den Faktor 4 bezüglich der kontinuierlichen LDS–Anteile.
- Daraus folgt weiter, dass die binäre Phasenmodulation zu den linearen Modulationsverfahren gezählt werden kann. Im Allgemeinen ist nämlich die (analoge) Phasenmodulation bis auf wenige Ausnahmen hinsichtlich des Quellensignals nichtlinear.
- Für die Grafiken wurden bei ASK (Sinus) und BPSK (Minus–Cosinus) aus Darstellungsgründen verschiedene Trägerphasen gewählt. Diese willkürliche Festlegung ist jedoch keine Einschränkung. Beide Verfahren funktionieren bei anderen Trägerphasen in gleicher Weise.
Demodulation und Detektion von BPSK–Signalen
Aufgrund der konstanten Hüllkurve des BPSK–Signals muss hier die Demodulation kohärent erfolgen. Es kann dabei vom gleichen Blockschaltbild wie bei der kohärenten ASK–Demodulation ausgegangen werden. Die Grafik zeigt die Signale q(t), r(t) = s(t), b(t), d(t) und υ(t).
Ein Vergleich mit den entsprechenden ASK–Signalen zeigt:
- Die Rechtecksignale q(t) und υ(t) sind nun bipolar und für das Detektionssignal bei BPSK gilt:
d_{\rm BPSK}(t) = 2 \cdot d_{\rm ASK}(t)-s_0.
- Im betrachteten dämpfungs–, verzerrungs– und rauschfreien Fall sind alle Detektionsabtastwerte d(ν · T) = ±s_0. Deshalb muss hier die Entscheiderschwelle E = 0 verwendet werden.
- Man erkennt den doppelten Abstand der BPSK–Detektionsabtastwerte (Kreismarkierungen) von der Schwelle, was sich bezüglich der Fehlerwahrscheinlichkeit entscheidend auswirkt.