Exercise 4.14: Phase Progression of the MSK

From LNTwww
Revision as of 09:56, 28 July 2017 by Guenter (talk | contribs)

Quellensignal und Tiefpass–Signale in den beiden Zweigen der MSK

Eine Realisierungsmöglichkeit für Minimum Shift Keying (MSK) bietet die Offset–QPSK, wie aus dem Blockschaltbild im Theorieteil hervorgeht.

  • Hierzu ist zunächst eine Umcodierung der Quellensymbole $q_k ∈ \{+1, –1\}$ in die ebenfalls binären Amplitudenkoeffizienten $a_k ∈ \{+1, –1\}$ vorzunehmen.
  • Diese Umcodierung wird in der Zusatzaufgabe 4.14Z eingehend behandelt.


Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ in den beiden Zweigen, die sich nach der Umcodierung $a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $ aus dem oben skizzierten Quellensignal $q(t)$ für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls

$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$

Dieser ist ebenso wie die Signale $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ auf $1$ normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion im Buch „Signaldarstellung”:

$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}$$

mit dem Betrag

$$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$

und der Phase

$$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$

Das physikalische MSK–Sendesignal ergibt sich dann zu

$$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Welche Aussagen gelten für die Hüllkurve $|s_{TP}(t)|$?

Die Hüllkurve schwankt cosinusförmig.
Die Hüllkurve ist konstant.
Die Hüllkurve ist unabhängig von der gesendeten Folge.

2

Es gelte $T = 1 μs$. Berechnen Sie den Phasenverlauf im Intervall 0 ≤ t ≤ T. Welche Phasenwerte ergeben sich bei t = T/2 und t = T?

$ϕ(t = T/2)$ =

$Grad$
$ϕ(t = T)$ =

$Grad$

3

Bestimmen Sie die Phasenwerte bei t = 2T, t = 3T und t = 4T.

$ϕ(t = 2T)$ =

$Grad$
$ϕ(t = 3T)$ =

$Grad$
$ϕ(t = 4T)$ =

$Grad$

4

Skizzieren und interpretieren Sie den Phasenverlauf $ϕ(t)$ im Bereich von 0 bis 8T. Welche Phasenwerte ergeben sich zu den folgenden Zeiten?

$ϕ(5T)$ =

$Grad$
$ϕ(6T)$ =

$Grad$
$ϕ(7T)$ =

$Grad$
$ϕ(8T)$ =

$Grad$


Musterlösung

1. Richtig sind die Lösungsvorschläge 2 und 3. Beispielsweise gilt im Bereich 0 ≤ t ≤ T: $$ |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.$$ Hierbei ist berücksichtigt, dass $a_0^2 = a_1^2 = 1$ ist. Dieses Ergebnis gilt für jedes Wertepaar $a_0$ ∈ {+1, –1} und $a_1 ∈ {+1, –1}$.

2. Mit der angegebenen Gleichung gilt: $$\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.$$ Der Quotient $a_1/a_0$ ist ±1. Damit kann dieser Quotient vorgezogen werden und man erhält: $$\phi(t = T/2 = 0.5\,{\rm \mu s}) = {\pi}/{4}\hspace{0.15cm}\underline { = 45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm \mu s}) = {\pi}/{2}\hspace{0.15cm}\underline {= 90^\circ} \hspace{0.05cm}.$$ Durch die Anfangsphase $ϕ_0 = 0$ können Mehrdeutigkeiten ausgeschlossen werden. Insbesondere gilt mit $a_0 = a_1 = +1$: $$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 2T= 2\,{\rm \mu s}) \hspace{0.15cm}\underline {= 0^\circ},$$ $$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 3T= 3\,{\rm \mu s}) \hspace{0.15cm}\underline {= -90^\circ},$$ $${\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 4T= 4\,{\rm \mu s})\hspace{0.15cm}\underline { = 180^\circ}\hspace{0.05cm}.$$ 4. Die Grafik zeigt die MSK–Phase $ϕ(t)$ zusammen mit dem Quellensignal $q(t)$. Man erkennt: P ID1741 Mod A 4 13 d.png

  • Ist das Symbol gleich +1, so steigt die Phase innerhalb der Symboldauer T linear um 90° (π/2) an.
  • Ist das Quellensymbol gleich –1, so fällt die Phase linear um 90°


Die weiteren Phasenwerte sind somit: $$\phi(5T) = \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T) = \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.$$