Contents
Erstes Nyquistkriterium im Zeitbereich
Für das gesamte erste Hauptkapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion des Signals
- $$d(t) = \sum \limits_{\it (\nu)} a_\nu \cdot g_d ( t - \nu T)$$
zu den Detektionszeitpunkten $(\nu \cdot T)$ immer dann, wenn der Detektionsgrundimpuls $g_d(t)$
- auf den Bereich $|t| < T$ beschränkt ist, was für das letzte Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung vorausgesetzt wurde, oder
- äquidistante Nulldurchgänge zu den Detektionszeitpunkten $\nu \cdot T$ aufweist.
Aus Gründen einer möglichst einfachen Darstellung wird im Folgenden das Detektionsstörsignal $d_{\rm N}(t)$ als vernachlässigbar klein angenommen.
$\text{Definition:}$ Man bezeichnet einen Detektionsgrundimpuls mit den Eigenschaften
- $$g_d ( t = \nu T)= 0 \hspace{0.3cm}{\rm{f\ddot{u}r} }\hspace{0.3cm} \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}\text{...}$$
als Nyquistimpuls $g_{\hspace{0.05cm}\rm Nyq}(t)$, benannt nach dem Physiker Harry Nyquist.
$\text{Beispiel 1:}$ Die Grafik zeigt das Detektionssignal $d(t)$ eines solchen Nyquistsystems. Rot gepunktet sind die (gewichteten und verschobenen) Nyquistimpulse $a_\nu \cdot g_{\hspace{0.05cm}\rm Nyq}(t -\nu \cdot T)$ eingezeichnet.
Bitte beachten Sie:
- Zu den Detektionszeitpunkten gilt $d(\nu \cdot T) = a_\nu \cdot g_{\hspace{0.05cm}\rm Nyq}(0)$, wie aus den blauen Kreisen und dem grünen Raster hervorgeht.
- Die Nachläufer der vorangegangenen Impulse $(\nu < 0)$ sowie die Vorläufer der nachfolgenden Impulse $(\nu > 0)$ beeinflussen beim Nyquistsystem die Detektion des Symbols $a_0$ nicht.
Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls
- $$g_{\hspace{0.05cm}\rm Nyq} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot t}{2 \cdot T}\right)$$
mit trapezförmigem Spektrum und dem Rolloff–Faktor $r = 0.5$ zugrunde liegt, der schon auf der Seite Trapeztiefpass des Buches „Lineare zeitinvariante Systeme” behandelt wurde.
Erstes Nyquistkriterium im Frequenzbereich
Harry Nyquist hat die Bedingung für eine impulsinterferenzfreie Detektion nicht nur für den Zeitbereich formuliert, sondern 1928 auch das entsprechende Kriterium im Frequenzbereich angegeben.
$\text{Erstes Nyquistkriterium:}$ Erfüllt das Spektrum $G_d(f)$ des Detektionsgrundimpulses $g_d(t)$ die Bedingung
- $$\sum \limits_{\it k = -\infty}^{+\infty} G_d \left ( f - \frac{k}{T} \right)= g_0 \cdot T = {\rm const.} \hspace{0.05cm}, $$
so ist $g_d(t)$ ein Nyquistimpuls mit äquidistanten Nulldurchgängen zu den Zeitpunkten $\nu \cdot T$für $\nu \ne 0$ und der Amplitude $g_d(t = 0) = g_0$. Hinweis: Beweis auf der nächsten Seite.
$\text{Beispiel 2:}$ Die Grafik zeigt die beiden Nyquistspektren $G_1(f)$ und $G_2(f)$:
Das links skizzierte rein reelle Spektrum
- $$G_1(f) \hspace{-0.05cm}=\hspace{-0.05cm} \left\{ \begin{array}{c} g_0 \cdot T \\ 0 \\ \end{array} \right. \begin{array}{*{1}c} \text{für} \\ \text{für} \\ \end{array}\begin{array}{*{20}c} \vert f \vert \hspace{-0.08cm}<\hspace{-0.08cm} {1}/(2T), \\ \vert f \vert \hspace{-0.08cm}>\hspace{-0.08cm} {1}/(2T) \\ \end{array}$$
erfüllt die oben formulierte Bedingung und zwar mit der kleinstmöglichen Bandbreite. Allerdings klingt der dazugehörige Nyquistimpuls $g_1(t) = g_0 \cdot {\rm si}(\pi \cdot t/T)$ sehr langsam ab, nämlich asymptotisch mit $1/t$.
Der rechts oben dargestellte Realteil des Spektrums $G_2(f)$ wurde aus dem Rechteckspektrum $G_1(f)$ durch Verschiebung von Teilstücken um $1/T$ nach rechts oder links konstruiert. Wegen
- $$\sum \limits_{\it k = -\infty}^{+\infty} {\rm Re}\left[G_2 \left ( f - {k}/{T} \right)\right]= g_0 \cdot T \hspace{0.05cm}, \hspace{0.5cm}\sum \limits_{\it k = -\infty}^{+\infty} {\rm Im}\left[G_2 \left ( f - {k}/{T} \right)\right]= 0$$
handelt es sich bei $G_2(f)$ ebenfalls um ein Nyquistspektrum. Beim Imaginärteil heben sich die jeweils gleich schraffierten Anteile, die jeweils um $2/T$ auseinander liegen, auf. Die Angabe des dazugehörigen Nyquistimpulses $g_2(t)$ ist allerdings sehr kompliziert.
Beweis des ersten Nyquistkriteriums
(1) Wir gehen von der ersten Nyquistbedingung im Zeitbereich aus:
- $$g_{\hspace{0.05cm}\rm Nyq}(\nu T) = \left\{ \begin{array}{c} g_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} \nu = 0 \hspace{0.05cm}, \\ \nu \ne 0 \hspace{0.1cm}. \\ \end{array}$$
(2) Aus dem zweiten Fourierintegral erhält man somit für $\nu \ne 0$:
- $$g_{\hspace{0.05cm}\rm Nyq}(\nu T) = \int_{-\infty}^{+\infty}G_{\rm Nyq}(f) \cdot {\rm e}^{ \hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi f \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.$$
(3) Zerlegt man das Fourierintegral in Teilintegrale der Breite $1/T$, so lauten die Bedingungsgleichungen:
- $$\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{(k-1/2)/T}^{(k+1/2)/T}G_{\rm Nyq}(f) \cdot {\rm e}^{ \hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi f \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.$$
(4) Mit der Substitution $f' = f + k/T$ folgt daraus:
- $$\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{-1/(2T)}^{1/(2T)}G_{\rm Nyq}(f' - \frac{k}{T} ) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm} (f'- k/T) \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm}T}\,{\rm d} f ' = 0 \hspace{0.05cm}.$$
(5) Für alle ganzzahligen Werte von $k$ und $\nu$ gilt:
- $${\rm e}^{-{\rm j} \hspace{0.05cm}2 \pi \hspace{0.05cm} k \hspace{0.05cm} \nu } = 1 \hspace{0.4cm} \Rightarrow \hspace{0.4cm}\sum_{k = -\infty}^{+\infty} \hspace{0.2cm} \int_{-1/(2T)}^{1/(2T)}G_{\rm Nyq}(f' - \frac{k}{T} ) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}2 \pi \hspace{0.02cm}f' \hspace{0.02cm} \nu \hspace{0.05cm}T}\,{\rm d} f ' = 0 \hspace{0.05cm}.$$
(6) Durch Vertauschen von Summation und Integration sowie Umbenennen von $f'$ in $f$ folgt weiter:
- $$\int_{-1/(2T)}^{1/(2T)}\hspace{0.2cm} \sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}2 \pi \hspace{0.02cm}f \hspace{0.02cm} \nu \hspace{0.05cm}T}\,{\rm d} f = 0 \hspace{0.05cm}.$$
(7) Diese Forderung ist für alle $\nu \ne 0$ nur dann zu erfüllen, wenn die unendliche Summe unabhängig von $f$ ist, also einen konstanten Wert besitzt:
- $$\sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) = K_{\rm Nyq} \hspace{0.05cm}.$$
(8) Aus der vorletzten Gleichung erhält man gleichzeitig für $\nu = 0$:
- $$\int_{-1/(2T)}^{1/(2T)}\hspace{0.2cm} \sum_{k = -\infty}^{+\infty} G_{\rm Nyq}(f - \frac{k}{T} ) \,{\rm d} f = K_{\rm Nyq} \cdot \frac{1}{T} = g_0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}K_{\rm Nyq} = g_0 \cdot T \hspace{0.05cm}.$$
1/T–Nyquistspektren
Eine besondere Bedeutung für die Digitalsignalübertragung besitzen solche Nyquistspektren, die auf den Frequenzbereich –1/T ≤ f ≤ +1/T beschränkt und zusammenhängend sind. Die Grafik zeigt mit der Trapez–Charakteristik und der Cosinus–Rolloff–Charakteristik zwei diesbezügliche Varianten.
Für beide Nyquistspektren gilt in gleicher Weise:
- Der Flankenabfall erfolgt zwischen den zwei Eckfrequenzen f1 und f2 punktsymmetrisch um die Nyquistfrequenz fNyq = 1/(2T) = (f1 + f2)/2. Das heißt, dass für 0 ≤ f ≤ fNyq gilt:\[G_{\rm Nyq}(f_{\rm Nyq}+f) + G_{\rm Nyq}(f_{\rm Nyq}-f) = g_0 \cdot T \hspace{0.05cm}.\]
- GNyq(f) ist für alle Frequenzen | f | ≤ f1 konstant gleich g0 · T und für | f | ≥ f2 identisch 0. Im Bereich zwischen f1 und f2 gilt:\[\frac{G_{\rm Nyq}(f)}{g_0 \cdot T } = \left\{ \begin{array}{c} \frac{f_2 - |f|}{f_2 -f_1 } \\ \\ \cos^2( \frac{\pi}{2}\cdot \frac{f_2 - |f|}{f_2 -f_1 }) \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{beim \hspace{0.15cm}Trapez}\hspace{0.05cm},} \\ \\ {\rm{\rm{beim \hspace{0.15cm}Cosinus-Rolloff}}\hspace{0.05cm}.} \\ \end{array}\]
- Zur Parametrisierung der Flankensteilheit verwenden wir in beiden Fällen den Rolloff–Faktor, der Werte zwischen 0 und 1 (einschließlich dieser Grenzen) annehmen kann:\[r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.05cm}.\]
- Für r = 0 (f1 = f2 = fNyq) ergibt sich das Rechteck-Nyquistspektrum, während der Rolloff-Faktor r = 1 (f1 = 0, f2 = 2fNyq) ein dreieckförmiges bzw. cos2–Spektrum angibt – je nachdem, von welcher der beiden oben abgebildeten Grundstrukturen man ausgeht.
Hinweis: In der Literatur wird der Rolloff–Faktor auch oft mit α („alpha”) bezeichnet.
1/T–Nyquistspektren (2)
Betrachten wir nun die Nyquistimpulse. Beim trapezförmigem Spektrum mit Rolloff–Faktor r erhält man:\[g_{_{\rm Trapez}} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi
\cdot t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot r \cdot
t}{T}\right) \hspace{0.5cm}{\rm mit }\hspace{0.5cm}{\rm si}(x) = {\rm sin}(x)/x .\]
Dagegen liefert die Fourierrücktransformation des Cosinus–Rolloff–Spektrums:\[g_{_{\rm CRO}} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot
t}{T}\right)\cdot \frac{\cos(\pi \cdot r \cdot t/T)}{1 - (2 \cdot
r \cdot t/T)^2 } \hspace{0.3cm}{\rm mit }\hspace{0.3cm}{\rm si}(x) = {\rm sin}(x)/x.\]
Diese beiden Nyquistimpulse kann man im nachfolgend genannten Interaktionsmodul mit der Einstellung Δf · T = 1 betrachten und sich dabei den Einfluss des Rolloff–Faktors verdeutlichen:
Tiefpässe im Frequenz– und Zeitbereich
Die obere Grafik zeigt den Nyquistimpuls mit Trapezspektrum für verschiedene Rolloff–Faktoren. Unten ist der entsprechende Zeitverlauf für das Cosinus–Rolloff–Spektrum dargestellt. Man erkennt:
- Je kleiner der Rolloff–Faktor r ist, desto langsamer erfolgt der Abfall des Nyquistimpulses. Diese Aussage trifft sowohl für das Trapez– als auch für das Cosinus–Rolloff–Spektrum zu.
- Im Grenzfall r → 0 ergibt sich in beiden Fällen das rechteckförmige Nyquistspektrum und der si–förmige Nyquistimpuls, der asymptotisch mit 1/t abklingt (grüne Kurven).
- Bei einem mittleren Rolloff (r ≈ 0.5) sind die ersten Überschwinger beim Trapezspektrum geringer als beim CRO–Spektrum, da bei gegebenem r die Nyquistflanke flacher verläuft (blaue Kurven).
- Mit dem Rolloff–Faktor r = 1 wird im Frequenzbereich aus dem Trapez ein Dreieck und aus dem CRO–Spektrum das Cosinus–Quadrat–Spektrum (rote Kurven).
- Mit r = 1 erfolgt der asymptotische Abfall der oberen Zeitfunktion (gemäß dem Trapezspektrum) mit 1/t2 und der Abfall der unteren Zeitfunktion (gemäß dem CRO–Spektrum) mit 1/t3.
Zweites Nyquistkriterium (1)
Vor der exakten mathematischen Definition soll anhand von Grafiken veranschaulicht werden, welche Bedeutung das zweite Nyquistkriterium zur Bewertung eines Digitalsystems besitzt.
- Die linke Grafik zeigt im Vorgriff auf das Kapitel 3.2 das Augendiagramm eines Nyquistsystems mit Cosinus–Rolloff–Charakteristik, wobei der Rolloff–Faktor r = 0.5 gewählt wurde. Da hier das erste Nyquistkriterium erfüllt ist (es besteht eine Punktsymmetrie um fNyq), ergibt sich für die vertikale Augenöffnung zum Zeitpunkt t = 0 der größtmögliche Wert 2 · gd(0). Alle Augenlinien gehen zum Zeitpunkt t = 0 durch einen der beiden rot markierten Punkte.
- Das mittlere Spektrum weist keine Symmetrie bezüglich des Flankenabfalls auf, so dass hier das erste Nyquistkriterium nicht erfüllt ist – im Gegensatz zum zweiten. Alle Augenlinien schneiden hier die Zeitachse zu den selben Zeiten (markiert durch die grünen Punkte), was beispielsweise die Taktwiedergewinnung mittels einer PLL (Phase-Locked Loop) erleichtert. Die horizontale Augenöffnung ist bei Erfüllung des zweiten Nyquistkriteriums maximal gleich der Symboldauer T.
- Das rechte Augendiagrammm verdeutlicht, dass beim CRO–Spektrum mit r = 1 – und nur bei diesem – sowohl das erste als auch das zweite Nyquistkriterium erfüllt werden. Der Nyquistimpuls\[g_d ( t )= g_0 \cdot \frac{\pi }{4}\cdot {\rm si} \left ( \frac{\pi \cdot t}{T}\right)\cdot \left [ {\rm si}(\pi \cdot (\frac{t}{T} + \frac{1}{2}) + {\rm si}(\pi \cdot (\frac{t}{T} - \frac{1}{2})\right]\]
- weist hier die erforderlichen Nulldurchgänge bei t = ±T, t = ±1.5T, t = ±2T, t = ±2.5T, ... auf, nicht jedoch bei ±0.5T. Die Impulsamplitude ist gd(t = 0) = g0.
Zweites Nyquistkriterium (2)
Ein Impuls gNyq-2(t), der das zweite Nyquistkriterium erfüllt, muss Nulldurchgänge bei ±1.5T, ±2.5T, ±3.5T, ... besitzen.
Dagegen weist ein Nyquist–1–Impuls Nulldurchgänge bei ±T, ±2T, ±3T auf. Deshalb lässt sich ein
Nyquist–2–Impuls immer als Summe zweier (eventuell unterschiedlicher) und um ±T/2 verschobener Nyquist–1–Impulse darstellen. Geht man von einem Impuls gNyq–1(t) aus, so gilt:
\[g_{_{\rm Nyq-2}} ( t )= g_{_{\rm Nyq-1}} ( t +{T}/{2})+
g_{_{\rm Nyq-1}} ( t -{T}/{2})\hspace{0.05cm}.\]
Im Frequenzbereich lautet das zweite Nyquistkriterium (siehe [ST85] [1]):
\[\sum_{k = -\infty}^{+\infty} \frac {G_d \left ( f - \frac{k}{T}
\right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}= {\rm const.}\]
\[g_{_{\rm Nyq-2}}( t ) = g_0 \cdot \left [ {\rm si}(\pi \cdot \frac{t + T/2}{T}) + {\rm si}(\pi \cdot \frac{t- T/2}{T}) \right] =\]
- \[= \frac{2 \cdot g_0}{\pi} \cdot \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\hspace{0.05cm}.\]
Aufgrund der Begrenzung des Spektrums GNyq–1(f) auf den Bereich | f | ≤ fNyq = 1/(2T) beschränkt sich in obiger Gleichung die Summe auf den Term mit k = 0 und man erhält:\[G_{_{\rm Nyq-2}}(f) = \left\{ \begin{array}{c} g_0 \cdot T \cdot \cos(\frac{\pi \cdot f}{2 \cdot f_{_{\rm Nyq}}} )\\ \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| < f_{_{\rm Nyq}}\hspace{0.05cm}, \\ \\ {\rm{sonst}}\hspace{0.05cm}. \\ \end{array}\] Dieser Frequenzverlauf und das dazugehörige Augendiagramm ist in der Grafik auf der letzten Seite in der mittleren Spalte oben skizziert. Man erkennt deutlich die Erfüllung des zweiten Nyquistkriteriums.
Aufgaben
Zusatzaufgaben:1.4 Komplexes Nyquistspektrum
Quellenverzeichnis
- ↑ Söder, G.; Tröndle, K.: Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme. Berlin – Heidelberg: Springer, 1985.