Exercise 1.3: System Comparison at AWGN Channel

From LNTwww

Zum Systemvergleich beim AWGN–Kanal

Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genanntenAWGN–Kanal aus und beschreiben folgendes doppelt–logarithmische Diagramm:

  • Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert) $10 · \lg ρ_v$ in dB an.
  • Auf der Abszisse ist $10 · \lg ξ$ aufgetragen, wobei für die normierte Leistungskenngröße gilt:
$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
  • In $ξ$ sind also die Sendeleistung $P_{\rm S}$, der Kanaldämpfungsfaktor $α_{\rm K}$, die Rauschleistungsdichte $N_0$ sowie die Bandbreite $B_{\rm NF}$ des Nachrichtensignals in geeigneter Weise zusammengefasst.
  • Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$

In der Grafik sind zwei Systeme eingezeichnet, deren (x, y)–Verlauf wie folgt beschrieben werden kann:

  • Das System A ist gekennzeichnet durch die folgende Gleichung:
$$y = x+1.$$
  • Entsprechend gilt für das System B:
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$

Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:

$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$

So steht $x = 4$ für $10 · \lg ξ = 40$ dB bzw. $ξ = 10^4$ und $y = 5$ steht für $10 · \lg ρ_v= 50$ dB, also $ρ_v = 10^5$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Qualitätskriterien.
  • Bezug genommen wird insbesondere auf die Seite Untersuchungen beim AWGN-Kanal.
  • Durch die Angabe der Leistungen in $\rm W$att sind diese unabhängig vom Bezugswiderstand $R$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welcher Sinken–Störabstand (in dB) ergibt sich bei System A mit $P_{\rm S}= 5 \;{\rm kW}$,   $\alpha_{\rm K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

2

Es wird nun $10 · \lg \hspace{0.05cm} ρ_v ≥ 60$ dB gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?

Erhöhung der Sendeleistung von $P_{\rm S}= 5$ kW auf $10$ kW.
Erhöhung des Kanaldämpfungsfaktors von $α_{\rm K} = 0.001$ auf $0.004$.
Reduzierung der Rauschleistungsdichte auf $N_0=10^{–11 }$ W/Hz .
Erhöhung der NF–Bandbreite von $B_{\rm NF}= 5$ kHz auf $6$ kHz.

3

Welcher Störabstand ergibt sich bei System B mit $10 · \lg ξ = 40$ dB?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

4

Gefordert wird der Störabstand $10 · \lg ρ_v = 50$ dB. Welche Sendeleistung $P_{\rm S}$ genügt bei System B, um diese Qualität zu erzielen?

$P_{\rm S} \ = \ $

$\ \text{ kW }$

5

Für welchen Wert von $10 · \lg ξ$ ist die Verbesserung von System B gegenüber System A am größten?

$10 · \lg \hspace{0.05cm} ξ \ = \ $

$\ \text{dB}$


Musterlösung

(1)  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu

$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$

Damit ergibt sich der Hilfsordinatenwert $y = 5$, was zum Sinken-Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$ führt.


(2)  Richtig sind also die Alternativen 2 und 3:

Diese Forderung entspricht gegenüber dem bisher betrachteten System einer Erhöhung des Störabstandes um $10$ dB, so dass auch $10 · \lg \hspace{0.05cm}ξ$ um $10$ dB erhöht werden muss:

$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$

Ein $10$–fach größerer $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:

  • durch die Sendeleistung $P_{\rm S} = 50$ kW statt $5$ kW,
  • durch den Dämpfungsfaktor $α_{\rm K} = 0.00316$ anstelle von $0.001$,
  • durch die Rauschleistungsdichte $N_0 = 10^{ –11 }$ W/Hz statt $10^{ –10 }$ W/Hz,
  • durch die Bandbreite $B_{\rm NF} = 0.5$ kHz statt $5$ kHz.


(3)  Für $10 · \lg \hspace{0.05cm} ξ = 40$ dB ist die Hilfsgröße $x = 4$. Damit ergibt sich für die Hilfsgröße der Ordinate:

$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$

Dies entspricht dem Sinken–Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem System A um $7$ dB.


(4)  Diese Problemstellung wird durch folgende Gleichung beschrieben:

$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$

Bei System A war hierfür $10 · \lg \hspace{0.05cm} \xi = 40$ dB notwendig, was bei den weiter gegebenen Zahlenwerten durch $P_{\rm S} = 5$ kW erreicht wurde. Nun kann die Sendeleistung um etwa $12.1$ dB verringert werden:

$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$

Das bedeutet: Bei System B wird mit nur 6% der Sendeleistung von System A – also mit nur $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.


(5)  Wir bezeichnen mit V (steht für Verbesserung) den größeren Sinken–Störabstand von System B gegenüber System A:

$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$

Durch Nullsetzen der Ableitung ergibt sich derjenige $x$–Wert, der zur maximalen Verbesserung führt:

$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$

Es ergibt sich also genau der in der Teilaufgabe (4) behandelte Fall mit $10 · \lg ρ_υ = 50$ dB, während der Störabstand bei System A nur $37.9$ dB beträgt. Die Verbesserung ist demnach $12.1$ dB.