Contents
Definition im Frequenzbereich
Wir betrachten ein reelles bandpassartiges Signal x(t) mit dem dazugehörigen Bandpass–Spektrum X(f), das bezüglich des Frequenznullpunktes einen geraden Real– und einen ungeraden Imaginärteil besitzt. Es wird vorausgesetzt, dass die Trägerfrequenz fT sehr viel größer als die Bandbreite des Bandpass–Signals x(t) ist.
Definition: Das zum physikalischen Signal x(t) gehörige analytische Signal x+(t) ist diejenige Zeitfunktion, deren Spektrum folgende Eigenschaft erfüllt:
- X+(f)=[1+sign(f)]⋅X(f)={2⋅X(f)f¨urf>0,0f¨urf<0.
Die so genannte „Signumfunktion” ist dabei für positive Werte von f gleich +1 und für negative f–Werte gleich −1.
- Der (beidseitige) Grenzwert liefert sign(0)=0.
- Der Index „+” soll deutlich machen, dass X+(f) nur Anteile bei positiven Frequenzen besitzt.
Aus der Grafik erkennt man die Berechnungsvorschrift für X+(f):
Das tatsächliche Bandpass–Spektrum X(f) wird
- bei den positiven Frequenzen verdoppelt, und
- bei den negativen Frequenzen zu Null gesetzt.
Beispiel 1:
Die Grafik zeigt
- links das (komplexe) Spektrum X(f) des Bandpass–Signals
- x(t)=4V⋅cos(2πfut)+6V⋅sin(2πfot).
- rechts das (ebenfalls komplexe) Spektrum des analytischen Signals x+(t).
Allgemeingültige Berechnungsvorschrift im Zeitbereich
Wir betrachten nun das Spektrum X+(f) des analytischen Signals etwas genauer und teilen dieses in einen bezüglich f=0 geraden Anteil X+g(f) und einen ungeraden Anteil X+u(f) auf:
- X+(f)=X+g(f)+X+u(f).
Alle diese Spektren sind im allgemeinen komplex.
Berücksichtigt man den Zuordnungssatz der Fouriertransformation, so sind anhand der Grafik folgende Aussagen möglich:
- Der gerade Anteil X+g(f) von X+(f) führt nach der Fouriertransformation zu einem reellen Zeitsignal, der ungerade Anteil X+u(f) zu einem imaginären.
- Es ist offensichtlich, dass X+g(f) gleich dem tatsächlichen Fourierspektrum X(f) und damit der Realteil von x+g(t) gleich dem vorgegebenen Signal x(t) mit Bandpasseigenschaften ist.
- Bezeichnen wir den Imaginärteil mit y(t), so lautet das analytische Signal:
- x+(t)=x(t)+j⋅y(t).
- Nach den allgemein gültigen Gesetzen der Fouriertransformation entsprechend dem Zuordnungssatz gilt somit für die Spektralfunktion des Imaginärteils:
- j⋅Y(f)=X+u(f)=sign(f)⋅X(f)⇒Y(f)=sign(f)j⋅X(f).
- Transformiert man diese Gleichung in den Zeitbereich, so wird aus der Multiplikation die Faltungsoperation, und man erhält:
- y(t)=1πt⋆x(t)=1π⋅∫+∞−∞x(τ)t−τdτ.
Darstellung mit der Hilberttransformation
An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen, die im Buch Lineare zeitinvariante Systeme noch eingehend behandelt wird.
Definition: Für die Hilberttransformierte H{x(t)} einer Zeitfunktion x(t) gilt:
- y(t)=H{x(t)}=1π⋅∫+∞−∞x(τ)t−τdτ.
- Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des Cauchy–Hauptwertsatzes ausgewertet werden.
- Entsprechend gilt im Frequenzbereich:
- Y(f)=−j⋅sign(f)⋅X(f).
Das Ergebnis der letzten Seite lässt sich mit dieser Definition wie folgt zusammenfassen:
- Man erhält aus dem realen, physikalischen Bandpass–Signal x(t) das analytische Signal x+(t), indem man zu x(t) einen Imaginärteil entsprechend der Hilberttransformierten hinzufügt:
- x+(t)=x(t)+j⋅H{x(t)}.
- Die Hilberttransformierte H{x(t)} verschwindet nur für den Fall x(t)=const. ⇒ Gleichsignal Bei allen anderen Signalformen ist das analytische Signal x+(t) somit stets komplex.
- Aus dem analytischen Signal x+(t) kann das reale Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
- x(t)=Re{x+(t)}.
Beispiel 2: Das Prinzip der Hilbert–Transformation wird durch die folgende Grafik nochmals verdeutlicht:
- Nach der linken Darstellung (A) kommt man vom physikalischen Signal x(t) zum analytischen Signal x+(t), indem man einen Imaginärteil j⋅y(t) hinzufügt.
- Hierbei ist y(t)=H{x(t)} eine reelle Zeitfunktion, die sich am einfachsten im Spektralbereich durch die Multiplikation des Spektrums X(f) mit −j⋅sign(f) angeben lässt.
Die rechte Darstellung (B) ist äquivalent zu (A):
- Nun gilt x+(t)=x(t)+z(t) mit der rein imaginären Funktion z(t).
- Ein Vergleich der beiden Bilder zeigt, dass tatsächlich z(t)=j⋅y(t) ist.
Zeigerdiagrammdarstellung der harmonischen Schwingung
Die Spektralfunktion X(f) einer harmonischen Schwingung x(t)=A⋅cos(2πfTt−φ) besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
- +fT mit dem komplexen Gewicht A/2⋅e−jφ,
- −fT mit dem komplexen Gewicht A/2⋅e+jφ.
Somit lautet das Spektrum des analytischen Signals (also ohne die Diracfunktion bei der Frequenz f=−fT):
- X+(f)=A⋅e−jφ⋅δ(f−fT).
Die dazugehörige Zeitfunktion erhält man durch Anwendung des Verschiebungssatzes:
- x+(t)=A⋅ej⋅(2πfTt−φ).
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit ωT=2πfT drehenden Zeiger.
Beispiel 3: Aus Darstellungsgründen ist in der folgenden Grafik das Koordinatensystem entgegen der üblichen Darstellung um 90∘ nach links gedreht (Realteil nach oben, Imaginärteil nach links).
Anhand dieser Grafik sind folgende Aussagen möglich:
- Zum Startzeitpunkt t=0 liegt der Zeiger der Länge A (Signalamplitude) mit dem Winkel −φ in der komplexen Ebene. Im gezeichneten Beispiel gilt φ=45∘.
- Für Zeiten t>0 dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz) ωT in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
- Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius A und benötigt für eine Umdrehung genau die Zeit T0, also die Periodendauer der harmonischen Schwingung x(t).
- Die Projektion des analytischen Signals x+(t) auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von x(t).
Zeigerdiagramm einer Summe harmonischer Schwingungen
Für die weitere Beschreibung gehen wir für das analytische Signal von folgendem Spektrum aus:
- X+(f)=I∑i=1Ai⋅e−j⋅φi⋅δ(f−fi).
Das linke Bild zeigt ein solches Spektrum für das Beispiel I=3. Wählt man I relativ groß und den Abstand zwischen benachbarten Spektrallinien entsprechend klein, so können mit obiger Gleichung auch (frequenz–) kontinuierliche Spektralfunktionen X+(f) angenähert werden.
Im rechten Bild ist die dazugehörige Zeitfunktion angedeutet. Diese lautet allgemein:
- x+(t)=I∑i=1Ai⋅ej⋅(ωi⋅t−φi).
Zu dieser Grafik anzumerken:
- Die Skizze zeigt die Ausgangslage der Zeiger zum Startzeitpunkt t=0 entsprechend den Amplituden Ai und den Phasenlagen φi.
- Die Spitze des resultierenden Zeigerverbundes ist durch das violette Kreuz markiert. Man erhält durch vektorielle Addition der drei Einzelzeiger für den Zeitpunkt t=0:
- x+(t=0)=[1⋅cos(60∘)−1⋅j⋅sin(60∘)]+2⋅cos(0∘)+1⋅cos(180∘)=1.500−j⋅0.866.
- Für Zeiten t>0 drehen die drei Zeiger mit unterschiedlichen Winkelgeschwindigkeiten ωi=2πfi. Der rote Zeiger dreht schneller als der grüne, aber langsamer als der blaue Zeiger.
- Da alle Zeiger entgegen dem Uhrzeigersinn drehen, wird sich auch der resultierende Zeiger x+(t) tendenziell in diese Richtung bewegen. Zum Zeitpunkt t = 1\,µ\text {s} liegt die Spitze des resultierenen Zeigers für die gegebenen Parameterwerte bei
- \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}
- Die resultierende Zeigerspitze liegt nun aber nicht wie bei einer einzigen Schwingung auf einem Kreis, sondern es entsteht eine komplizierte geometrische Figur.
Das interaktive Applet Physikalisches Signal & Analytisches Signal verdeutlicht x_+(t) für die Summe dreier harmonischer Schwingungen.
Aufgaben zum Kapitel
Aufgabe 4.3: Zeigerdiagrammdarstellung
Aufgabe 4.3Z: Hilbert-Transformator
Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM
Aufgabe 4.4Z: Zeigerdiagramm bei ESB-AM