Discrete Memoryless Sources

From LNTwww

# OVERVIEW OF THE FIRST MAIN CHAPTER #


This first chapter describes the calculation and the meaning of entropy.  According to the Shannonian information definition, entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.  Somewhat casually expressed, the entropy of a random quantity quantifies its "randomness".

In detail are discussed:

  • the decision content  and the entropy  of a memoryless news source,
  • the binary entropy function  and its application to non-binary sources,
  • the entropy calculation for memory sources  and suitable approximations,
  • the peculiarities of Markov sources  regarding the entropy calculation,
  • the procedure for sources with a large number of symbols, for example natural texts,
  • the entropy estimates  according to Shannon and Küpfmüller.


Further information on the topic as well as Exercises, simulations and programming exercises can be found in the experiment "Value Discrete Information Theory" of the practical course "Simulation Digitaler Übertragungssysteme" (english: Simulation of Digital Transmission Systems).  This (former) LNT course at the TU Munich is based on

  • the Windows program  WDIT   ⇒   the link points to the ZIP version of the program and
  • the associated  Internship guide   ⇒   the link refers to the PDF version.


Model and requirements


We consider a value discrete message source  $\rm Q$, which gives a sequence  $ \langle q_ν \rangle$  of symbols.

  • For the run variable  $ν = 1$, ... , $N$, where  $N$  should be "sufficiently large".
  • Each individual source symbol  $q_ν$  comes from a symbol set  $\{q_μ \}$  where  $μ = 1$, ... , $M$, where  $M$  denotes the symbol range:
$$q_{\nu} \in \left \{ q_{\mu} \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$

The figure shows a quaternary message source  $(M = 4)$  with the alphabet  $\rm \{A, \ B, \ C, \ D\}$  and an exemplary sequence of length  $N = 100$.

File:P ID2227 Inf T 1 1 S1a new.png
Memoryless Quaternary Message Source

The following requirements apply:

  • The quaternary news source is fully described by  $M = 4$  symbol probabilities  $p_μ$.  In general it applies:
$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
  • Since the alphabet consists of symbols  (and not of random variables) , the specification of  Expected_values  (linear mean, quadratic mean, dispersion, etc.) is not possible here, but also not necessary from an information-theoretical point of view.


These properties will now be illustrated with an example.

Relative frequencies as a function of  $N$

$\text{Example 1:}$  For the symbol probabilities of a quaternary source applies:

$$p_{\rm A} = 0.4 \hspace{0.05cm},\hspace{0.2cm}p_{\rm B} = 0.3 \hspace{0.05cm},\hspace{0.2cm}p_{\rm C} = 0.2 \hspace{0.05cm},\hspace{0.2cm} p_{\rm D} = 0.1\hspace{0.05cm}.$$

For an infinitely long sequence  $(N \to \infty)$

  • were the  relative frequencies  $h_{\rm A}$,  $h_{\rm B}$,  $h_{\rm C}$,  $h_{\rm D}$   ⇒   a-posteriori parameters
  • identical with the  probabilities  $p_{\rm A}$,  $p_{\rm B}$,  $p_{\rm C}$,  $p_{\rm D}$   ⇒   a-priori parameters.


With smaller  $N$  deviations may occur, as the adjacent table (result of a simulation) shows.

  • In the graphic above an exemplary sequence is shown with  $N = 100$  symbols.
  • Due to the set elements  $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$  no mean values can be given.


However, if you replace the symbols with numerical values, for example  $\rm A \Rightarrow 1$,   $\rm B \Rightarrow 2$,   $\rm C \Rightarrow 3$,   $\rm D \Rightarrow 4$, then you will get
    time averaging   ⇒   crossing line     or     coulter averaging   ⇒   expected value formation

$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 2 \hspace{0.05cm},$$
$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2} } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2 = 5 \hspace{0.05cm},$$
$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$


Decision content - Message content


Claude Elwood Shannon  defined in 1948 in the standard work of information theory  [Sha48][1]  the concept of information as "decrease of uncertainty about the occurrence of a statistical event".

Let us make a mental experiment with  $M$  possible results, which are all equally probable:   $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$

Under this assumption applies:

  • Is  $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
  • On the other hand, an observer learns about an experiment with  $M = 2$, for example the "coin toss" with the set of events  $\big \{\rm \bold symbol{\rm Z}(ahl), \rm \bold symbol{\rm W}(app) \big \}$  and the probabilities  $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information; The uncertainty regarding  $\rm Z$  resp.  $\rm W$  is resolved.
  • In the experiment "dice"  $(M = 6)$  and even more in roulette  $(M = 37)$  the gained information is even more significant for the observer than in the "coin toss" when he learns which number was thrown or which ball fell.
  • Finally it should be considered that the experiment  "triple coin toss"  with the  $M = 8$  possible results  $\rm ZZZ$,  $\rm ZZW$,  $\rm ZWZ$,  $\rm ZWW$,  $\rm WZZ$,  $\rm WZW$,  $\rm WWZ$,  $\rm WWW$  provides three times the information as the single coin toss  $(M = 2)$.


The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol range  $M$.

$\text{Definition:}$  The  decision content   of a message source depends only on the symbol range  $M$  and results in

$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ "bit")} = {\rm ln}\hspace{0.1cm}M \hspace{0.15cm}\text {(in "nat")} = {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in "Hartley")}\hspace{0.05cm}.$$
  • The term  message content is also commonly used for this.
  • Since  $H_0$  indicates the maximum value of the  Entropy  $H$ , $H_\text{max}$  is also used in our tutorial as short notation .


Please note our nomenclature:

  • The logarithm will be called "log" in the following, independent of the base.
  • The relations mentioned above are fulfilled due to the following properties:
$${\rm log}\hspace{0.1cm}1 = 0 \hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}37 > {\rm log}\hspace{0.1cm}6 > {\rm log}\hspace{0.1cm}2\hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
  • Usually we use the logarithm to the base  $2$   ⇒   Logarithm dualis  $\rm (ld)$, where the pseudo unit "bit", more precisely:  "bit/symbol", is then added:
$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2} = \frac{{\rm ln}\hspace{0.1cm}M}{{\rm ln}\hspace{0.1cm}2} \hspace{0.05cm}.$$
  • In addition, you can find in the literature some additional definitions, which are based on the natural logarithm  $\rm (ln)$  or the logarithm  $\rm (lg)$ .

Informationsgehalt und Entropie


Wir verzichten nun auf die bisherige Voraussetzung, dass alle  $M$  möglichen Ergebnisse eines Versuchs gleichwahrscheinlich seien.  Im Hinblick auf eine möglichst kompakte Schreibweise legen wir für diese Seite lediglich fest:

$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$

Wir betrachten nun den Informationsgehalt  der einzelnen Symbole, wobei wir den „Logarithmus dualis” mit $\log_2$ bezeichnen:

$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)} \hspace{0.05cm}.$$

Man erkennt:

  • Wegen  $p_μ ≤ 1$  ist der Informationsgehalt nie negativ.  Im Grenzfall  $p_μ \to 1$  geht  $I_μ \to 0$.
  • Allerdings ist für  $I_μ = 0$   ⇒   $p_μ = 1$   ⇒   $M = 1$  auch der Entscheidungsgehalt  $H_0 = 0$.
  • Bei abfallenden Wahrscheinlichkeiten  $p_μ$  nimmt der Informationsgehalt kontinuierlich zu:
$$I_1 < I_2 < \hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_\mu <\hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_{M-1} < I_M \hspace{0.05cm}.$$

$\text{Fazit:}$  Je unwahrscheinlicher ein Ereignis ist, desto größer ist sein Informationsgehalt.  Diesen Sachverhalt stellt man auch im täglichen Leben fest:

  • „6 Richtige” im Lotto nimmt man sicher eher wahr als „3 Richtige” oder gar keinen Gewinn.
  • Ein Tsunami in Asien dominiert auch die Nachrichten in Deutschland über Wochen im Gegensatz zu den fast standardmäßigen Verspätungen der Deutschen Bahn.
  • Eine Niederlagenserie von Bayern München führt zu Riesen–Schlagzeilen im Gegensatz zu einer Siegesserie.  Bei 1860 München ist genau das Gegenteil der Fall.


Der Informationsgehalt eines einzelnen Symbols (oder Ereignisses) ist allerdings nicht sehr interessant.  Dagegen erhält man

  • durch Scharmittelung über alle möglichen Symbole  $q_μ$  bzw. 
  • durch Zeitmittelung über alle Elemente der Folge  $\langle q_ν \rangle$


eine der zentralen Größen der Informationstheorie.

$\text{Definition:}$  Die  Entropie  $H$  einer Quelle gibt den mittleren Informationsgehalt aller Symbole  an:

$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\sum_{\mu = 1}^M p_{\mu} \cdot{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}\text{(Einheit: bit, genauer: bit/Symbol)} \hspace{0.05cm}.$$

Die überstreichende Linie kennzeichnet wieder eine Zeitmittelung und  $\rm E[\text{...}]$  eine Scharmittelung.


Die Entropie ist unter anderem ein Maß für

  • die mittlere Unsicherheit über den Ausgang eines statistischen Ereignisses,
  • die „Zufälligkeit” dieses Ereignisses,  sowie
  • den mittleren Informationsgehalt einer Zufallsgröße.

Binäre Entropiefunktion


Wir beschränken uns zunächst auf den Sonderfall  $M = 2$  und betrachten eine binäre Quelle, die die beiden Symbole  $\rm A$  und  $\rm B$  abgibt.  Die Auftrittwahrscheinlichkeiten seien   $p_{\rm A} = p$  und  $p_{\rm B} = 1 – p$.

Für die Entropie dieser Binärquelle gilt:

$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)} \hspace{0.05cm}.$$

Man nennt die Funktion  $H_\text{bin}(p)$  die  binäre Entropiefunktion.  Die Entropie einer Quelle mit größerem Symbolumfang  $M$  lässt sich häufig unter Verwendung von  $H_\text{bin}(p)$  ausdrücken.

$\text{Beispiel 2:}$  Die Grafik zeigt die binäre Entropiefunktion für die Werte  $0 ≤ p ≤ 1$  der Symbolwahrscheinlichkeit von  $\rm A$  $($oder auch von  $\rm B)$.  Man erkennt:

Binäre Entropiefunktion als Funktion von  $p$
  • Der Maximalwert  $H_\text{max} = 1\; \rm bit$  ergibt sich für  $p = 0.5$, also für gleichwahrscheinliche Binärsymbole.  Dann liefern  $\rm A$  und  $\rm B$  jeweils den gleichen Beitrag zur Entropie.
  • $H_\text{bin}(p)$  ist symmetrisch um  $p = 0.5$.  Eine Quelle mit  $p_{\rm A} = 0.1$  und  $p_{\rm B} = 0.9$  hat die gleiche Entropie  $H = 0.469 \; \rm bit$  wie eine Quelle mit  $p_{\rm A} = 0.9$  und  $p_{\rm B} = 0.1$.
  • Die Differenz  $ΔH = H_\text{max} - H$ gibt  die  Redundanz  der Quelle an und  $r = ΔH/H_\text{max}$  die  relative Redundanz.  Im Beispiel ergeben sich  $ΔH = 0.531\; \rm bit$  bzw.  $r = 53.1 \rm \%$.
  • Für  $p = 0$  ergibt sich  $H = 0$, da hier die Symbolfolge  $\rm B \ B \ B \text{...}$  mit Sicherheit vorhergesagt werden kann.  Eigentlich ist nun der Symbolumfang nur noch  $M = 1$.  Gleiches gilt für  $p = 1$   ⇒   Symbolfolge  $\rm A \ A \ A \text{...}$.
  • $H_\text{bin}(p)$  ist stets eine  konkave Funktion, da die zweite Ableitung nach dem Parameter  $p$  für alle Werte von  $p$  negativ ist:
$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0 \hspace{0.05cm}.$$

Nachrichtenquellen mit größerem Symbolumfang


Im  ersten Abschnitt  dieses Kapitels haben wir eine quaternäre Nachrichtenquelle  $(M = 4)$  mit den Symbolwahrscheinlichkeiten  $p_{\rm A} = 0.4$,   $p_{\rm B} = 0.3$,   $p_{\rm C} = 0.2$   und  $ p_{\rm D} = 0.1$  betrachtet.  Diese Quelle besitzt die folgende Entropie:

$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$

Oft ist zur zahlenmäßigen Berechnung der Umweg über den Zehnerlogarithmus  $\lg \ x = {\rm log}_{10} \ x$  sinnvoll, da der Logarithmus dualis  $ {\rm log}_2 \ x$  meist auf Taschenrechnern nicht zu finden ist.

$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit} \hspace{0.05cm}.$$

$\text{Beispiel 3:}$  Nun bestehen zwischen den einzelnen Symbolwahrscheinlichkeiten gewisse Symmetrien:

Entropie von Binärquelle und Quaternärquelle
$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm mit} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$

In diesem Fall kann zur Entropieberechnung auf die binäre Entropiefunktion zurückgegriffen werden:

$$H_{\rm quat} = 2 \cdot p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + 2 \cdot (0.5-p) \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.5-p}$$
$$\Rightarrow \hspace{0.3cm} H_{\rm quat} = 1 + H_{\rm bin}(2p) \hspace{0.05cm}.$$

Die Grafik zeigt abhängig von  $p$

  • den Entropieverlauf der Quaternärquelle (blau)
  • im Vergleich zum Entropieverlauf der Binärquelle (rot).


Für die Quaternärquelle ist nur der Abszissen  $0 ≤ p ≤ 0.5$  zulässig.
Man erkennt aus der blauen Kurve für die Quaternärquelle:

  • Die maximale Entropie  $H_\text{max} = 2 \; \rm bit/Symbol$  ergibt sich für  $p = 0.25$   ⇒   gleichwahrscheinliche Symbole:   $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
  • Mit  $p = 0$  bzw.  $p = 0.5$  entartet die Quaternärquelle zu einer Binärquelle mit  $p_{\rm B} = p_{\rm C} = 0.5$  und  $p_{\rm A} = p_{\rm D} = 0$   ⇒   Entropie  $H = 1 \; \rm bit/Symbol$.
  • Die Quelle mit  $p_{\rm A} = p_{\rm D} = 0.1$  und  $p_{\rm B} = p_{\rm C} = 0.4$  weist folgende Kennwerte auf (jeweils mit der Pseudoeinheit „bit/Symbol”):
    (1)   Entropie:   $H = 1 + H_{\rm bin} (2p) =1 + H_{\rm bin} (0.2) = 1.722,$
    (2)   Redundanz:   ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
    (3)   relative Redundanz:   $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
  • Die Redundanz der Quaternärquelle mit  $p = 0.1$  ist gleich  $ΔH = 0.278 \; \rm bit/Symbol$  und damit genau so groß wie die Redundanz der Binärquelle mit  $p = 0.2$.


Aufgaben zum Kapitel


Aufgabe 1.1: Wetterentropie

Aufgabe 1.1Z: Binäre Entropiefunktion

Aufgabe 1.2: Entropie von Ternärquellen


Quellenverzeichnis

  1. Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.