Analytical Signal and its Spectral Function

From LNTwww

Definition in the Frequency Domain


We consider a real bandpass-like signal  $x(t)$  with the corresponding bandpass spectrum  $X(f)$, which has an even real and an odd imaginary part with respect to the frequency zero point. It is assumed that the carrier frequency  $f_{\rm T}$  is much larger than the bandwidth of the bandpass signal  $x(t)$ .

$\text{Definition:}$  The time function belonging to the physical signal  $x(t)$  analytical signal  $x_+(t)$  is that time function, whose spectrum fulfills the following property

Analytical Signal in the Frequency Domain
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$

The so called „signum function” is for positive values of  $f$  equal to  $+1$  and for negative  $f$-values equal to  $-1$.

  • The (double sided) limit value returns  $\sign(0) = 0$.
  • The index "+" should make clear that  $X_+(f)$  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  $X_+(f)$:

The actual bandpass spectrum  $X(f)$  will

  • doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Example of a Spectrum of an Analytical Signal

$\text{Example 1:}$ 

The graphic

  • at left shows the (complex) spectrum  $X(f)$  of the bandpass signal
$$x(t) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t).$$
  • and on the right the (complex) spectrum of the analytical signal  $x_{+}(t)$.


Calculation Procedure in The Time Domain


To Derive the Analytical Signal

Now we will take a closer look at the spectrum  $X_+(f)$  of the analytical signal and divide it into a with respect to  $f = 0$  even part  $X_{\rm +g}(f)$  and an odd part  $X_{\rm +u}(f)$ :

$$X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).$$

All these spectra are generally complex.

If one considers the nbsp; Mapping Theorem  of the Fourier transform, then the following statements are possible on the basis of the graphic:

  • The even part  $X_{\rm +g}(f)$  of  $X_{+}(f)$  leads after the Fourier transformation to a real time signal, the odd part  $X_{\rm +u}(f)$  to an imaginary one.
  • It is obvious that  $X_{\rm +g}(f)$  is equal to the actual Fourier spectrum  $X(f)$  and thus the real part of  $x_{\rm +g}(t)$  is equal to the given signal  $x(t)$  with bandpass properties.
  • If we denote the imaginary part with  $y(t)$, the analytical signal is:
$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
  • According to the generally valid laws of Fourier transform corresponding to the  Mapping Theorem , the following applies to the spectral function of the imaginary part:
$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).$$
  • If one transforms this equation into the time domain, the multiplication becomes the  convolution, and one gets:
$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.$$

Representation with Hilbert Transform


At this point it is necessary to briefly discuss a further spectral transformation, which is dealt thoroughly in the book Linear and Time Invariant Systems Systeme .

$\text{Definition:}$  FFor the  Hilbert transformed   $ {\rm H}\left\{x(t)\right\}$  a time function  $x(t)$  applies:

$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.$$
  • This particular integral cannot be solved in a simple, conventional way, but must be evaluated using the  principal value of Cauchy .
  • Correspondingly valid in the frequency domain:
$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$


The result of the last page can be summarized with this definition as follows:

  • You get from the real, physical bandpass signal  $x(t)$  the analytic signal  $x_+(t)$ by adding to  $x(t)$  an imaginary part according to the Hilbert transform:
$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
  • The Hilbert transformed  $\text{H}\{x(t)\}$  disappears only in the case of  $x(t) = \rm const.$   ⇒   DC signal With all other signal forms the analytic signal  $x_+(t)$  is therefore always complex.
  • From the analytical signal  $x_+(t)$  the real bandpass signal can be easily determined by real part formation:
$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$

{{GraueBox|TEXT= $\text{Example 2:}$  The principle of the Hilbert transformation is illustrated again by the following diagram:

    • According to the left representation  $\rm (A)$  ,one gets an analytical signal  $x_+(t)$ from the physical signal  $x(t)$  by adding an imaginary part   ${\rm j} \cdot y(t)$ .
  • Here   $y(t) = {\rm H}\left\{x(t)\right\}$  is a real time function, which can be calculated easily in the spectral range by multiplying the spectrum  $X(f)$  with  $- {\rm j} \cdot \sign(f)$ .
On the Illustration of the Hilbert Transformed

The right representation  $\rm (B)$  is equivalent to  $\rm (A)$:

  • Now applies  $x_+(t) = x(t) + z(t)$  with the purely imaginary function  $z(t)$.
  • A comparison of the two images shows that actually  $z(t) = {\rm j} \cdot y(t)$  is valid.}


Vector Diagram Representation of The Harmonic Oscillation


The spectral function  $X(f)$  of a harmonic oscillation  $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$  consists of two Dirac functions at the frequencies

  • $+f_{\rm T}$  with the complex weight   $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
  • $-f_{\rm T}$  with the complex weight   $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.


Thus, the spectrum of the analytical signal is  $($without the Dirac function at the frequency  $f =-f_{\rm T})$:

$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .$$

The corresponding time function is obtained by applying the  Shifting Theorem:

$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$

This equation describes a rotating pointer with constant angular velocity  $\omega_{\rm T} = 2\pi f_{\rm T}$ .

$\text{Example 3:}$  For illustrative reasons the coordinate system in the following figure is rotated to the left (real part up, imaginary part to the left), contrary to the usual representation by  $90^\circ$&nbsp.

Vector Diagram of a Harmonic Oscillation

Anhand dieser Grafik sind folgende Aussagen möglich: On the basis of this diagram the following statements are possible:

  • At the start time  $t = 0$  the pointer of length  $A$  (signal amplitude) lies with angle  $-\varphi$  in the complex plane. In the drawn example,  $\varphi = 45^\circ$.
  • For the times  $t > 0$  the pointer rotates with constant angular velocity (angular frequency)  $\omega_{\rm T}$  in mathematically positive direction, i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  $A$  and requires exactly the time  $T_0$, i.e. the period of the harmonic oscillation  $x(t)$ for one rotation.
  • The projection of the analytical signal  $x_+(t)$  onto the real axis, marked by red dots, provides the instantaneous values of  $x(t)$.


Vector Diagram of a Sum of Harmonic Oscillations


For further description we assume the following spectrum for the analytical signal:

$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .$$

The left image shows such a spectrum for the example  $I = 3$. If one chooses  $I$  relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency–) continuous spectral functions  $X_+(f)$  can also be approximated with the above equation.

Vector Diagram of a Sum of 3 Oscillations

In the right picture the corresponding time function is indicated. This is in general:

$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$

To note about this graphic:

  • The sketch shows the initial position of the pointers at the start time  $t = 0$  corresponding to the amplitudes  $A_i$  and the phase positions  $\varphi_i$.
  • The tip of the resulting pointer compound is marked by the violet cross. One obtains by vectorial addition of the three individual pointers for the time  $t = 0$:
$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
  • For times  $t > 0$  the three pointers rotate at different angular speeds  $\omega_i = 2\pi f_i$. The red hand rotates faster than the green hand, but slower than the blue hand.
  • Since all hands rotate counterclockwise, the resulting hand  $x_+(t)$  will also tend to move in this direction. At time  $t = 1\,µ\text {s}$  the peak of the resulting pointer for the given parameter values is
$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}$$
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  Physical Signal & Analytical Signal  illustrates  $x_+(t)$  for the sum of three harmonic oscillations.

Exercises for the Chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for DSB-AM