Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.3: Calculating with Complex Numbers

From LNTwww
Revision as of 15:54, 25 December 2020 by Noah (talk | contribs)

Betrachtete Zahlen in der komplexen Ebene

The diagram to the right shows some points in the complex plane, namely


z1=ej45,
z2=2ej135,
z3=j.

In the course of this task, the following complex values will be considered:

z4=z22+z23,
z5=1/z2,
z6=z3,
z7=ez2,
z8=ez2+ez2.




Notes:



Questions

1

Which of the following equations are true?

2z1+z2=0.
z1z2+2=0.
(z1/z2)z3 is purely real.

2

What is the value of the random variable  z4=z22+z23=x4+jy4?

x4 = 

y4 = 

3

Calculate the complex value  z5=1/z2=x5+jy5.

x5 = 

y5 = 

4

z6  is the square root of  z3 . Therefore z6  has two solutions with the absolute value  |z6|=1.
Give the two possible phase angles of  z6 .

ϕ6 (between0and+180deg)= 

 deg
ϕ6 (between180and0deg)= 

 deg

5

Calculate  z7=ez2=x7+jy7.

x7 = 

y7 = 

6

Compute the complex value  z8=ez2+ez2=x8+jy8 .

x8 = 

y8 = 


Solution

(1)  Correct are the solutions 1 and 2:

2z1+z2=2cos(45)2jsin(45)2cos(45)+2jsin(45)=0.
  • The second option is also correct, because
z1z2=1ej452ej135=2ej180=2.
  • In contrast, the third option is wrong. The division of  z1 and z2  yields: 
z1z2=ej452ej135=0.5ej180=0.5.
  • The multiplication by  z3=j  leads to the result  j/2, i.e. to a purely imaginary quantity.


(2)  Das Quadrat von  z2  hat den Betrag  |z2|2  und die Phase  2ϕ2

z22=22ej270=4ej90=4j.
  • Entsprechend gilt für das Quadrat von  z3
z23=(j)2=1.
  • Somit ist  x_4 =\underline{ –1}  und  y_4 = \underline{–4}.


(3)  Durch Anwendung der Divisionsregel erhält man: 

z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}} = 0.5 \cdot \big[ \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ \circ})\big]
\Rightarrow \ x_5 = - {\sqrt{2}}/{4}\hspace{0.15cm}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \hspace{0.15cm}\underline{= -0.354}.


(4)  Die angegeben Beziehung für  z_6  kann wie folgt umgeformt werden:  z_6^2 = {z_3} = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 90^{ \circ}}.

  • Man erkennt, dass es zwei Möglichkeiten für  z_6  gibt, die diese Gleichung erfüllen: 
z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} L\ddot{o}sung)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ \circ}},
z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} L \ddot{o}sung)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}45^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ \circ}}.


(5)  Die komplexe Größe  z_2  lautet in Realteil/Imaginärteildarstellung: 

z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.
  • Damit ergibt sich für die komplexe Exponentialfunktion:
z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\big].
  • Mit  {\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.4cm} \cos (\sqrt{2}) = 0.156, \hspace{0.4cm} \sin (\sqrt{2}) = 0.988  erhält man somit: 
z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.


(6)  Ausgehend vom Ergebnis der Teilaufgabe  (4)  erhält man für z_8

z_8 = {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin (\sqrt{2})\big] = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_8 \hspace{0.15cm}\underline{= 0.076}, \hspace{0.4cm}y_8\hspace{0.15cm}\underline{ = 0}.