Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.3Z: Calculating with Complex Numbers II

From LNTwww
Revision as of 17:19, 9 April 2021 by Guenter (talk | contribs)

Considered numbers in the complex plane

The following three complex quantities are shown in the complex plane to the right:

z1=4+3j,
z2=2,
z3=6j.

Within the framework of this task, the following quantities are to be calculated:

z4=z1z1,
z5=z1+2z2z3/2,
z6=z1z2,
z7=z3/z1.




Hints:

  • This exercise belongs to the chapter Calculating with Complex Numbers.
  • The topic of this task is also covered in the (German language) learning video
         Rechnen mit komplexen Zahlen   ⇒   "Arithmetic operations involving complex numbers".
  • Enter the phase values in the range of  180<ϕ+180.



Questions

1

Enter the magnitude and phase of  z1 .

|z1| = 

ϕ1 = 

deg

2

What is  z4=z1z1=x4+jy4?

x4 = 

y4 = 

3

Calculate  z5=x5+jy5 .

x5 = 

y5 = 

4

Specify the magnitude and phase of  z6=z1z2    (range  ±180).

|z6| = 

ϕ6 = 

deg

5

What is the phase value of the purely imaginary number  z3?

ϕ3 = 

deg

6

Calculate the magnitude and phase of  z7=z3/z1    (range  ±180).

|z7| = 

ϕ7 = 

deg


Solution

(1)  The magnitude can be calculated according to the  Pythagorean  theorem:

|z1|=x21+y21=42+32=5_.
ϕ1=arctany1x1=arctan34=36.9_.


(2)  Multiplying  z1  by its conjugate complex  z1  yields the purely real quantity  z4, as the following equations show:

z4=(x1+jy1)(x1jy1)=x21+y21=|z1|2=25,
z4=|z1|ejϕ1|z1|ejϕ1=|z1|2=25x4=25_,y4=0_.


(3)  By dividing into real and imaginary part one can write:

x5=x1+2x2x3/2=4+2(2)0=0_,
y5=y1+2y2y3/2=3+2062=0_.


(4)  If one writes  z2  as magnitude and phase  ⇒   |z2|=2, ϕ2=180, one obtains for the product:

|z6|=|z1||z2|=52=10_,
ϕ6=ϕ1+ϕ2=36.9+180=216.9=143.1_.


(5)  The phase is  ϕ3=90  (see graph above). This can be formally proven:

ϕ3=arctan(60)=arctan()ϕ3=90_.


(6)  First, the more inconvenient solution:

z7=z3z1=6j4+3j=6j(43j)(4+3j)(43j)=18+24j25=1.2ej53.1.
  • An easier way of solving the problem is:
|z7|=|z3||z1|=65=1.2_,ϕ7=ϕ3ϕ1=9036.9=53.1_.