Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.2: Rectangular Spectra

From LNTwww
Revision as of 15:34, 5 May 2021 by Guenter (talk | contribs)

Given low–pass and band-pass spectra

We consider two signals  u(t)  and  w(t)  with rectangular spectra  U(f)  and  W(f) respectively.

  • It is obvious that
u(t)=u0si(πt/Tu)
is a low-pass signal whose two parameters  u0  and  Tu  are to be determined in subtask  (1) .
  • In contrast, the spectrum  W(f) shows that  w(t)  describes a band-pass signal.


This task also refers to the band-pass signal

d(t)=10Vsi(5πf2t)6Vsi(3πf2t)

whose spectrum was determined in  Exercise 4.1Z . Let  f2=2 kHz.




Hints:

  • Consider the following trigonometric relationship in the solution:
\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big].


Questions

1

What are the parameter values  u_0  and  T_u  of the low-pass signal?

u_0\ = \

 \text{V}
T_u\ = \

 \text{ms}

2

Calculate the band-pass signal  w(t).  What are the signal values at  t = 0  and  t = 62.5 \, {\rm µ}\text{s}?

w(t=0)\ = \

 \text{V}
w(t=62.5 \,{\rm µ} \text{s})\ = \

 \text{V}

3

Which statements are true regarding the band-pass signals  d(t)  and  w(t) ?  Justify your result in the time domain.

The signals  d(t)  and  w(t)  are identical.
d(t)  and  w(t)  differ by a constant factor.
d(t)  und  w(t)  have different shapes.


Solution

(1)  The time  T_u   ⇒   first zero of the LP signal  u(t)  – is equal to the reciprocal of the width of the rectangular spectrum, i.e.   1/(2\, \text{kHz} ) \hspace{0.15 cm}\underline{= 0.5 \, \text{ms}}.

  • The pulse amplitude is equal to the rectangular area as shown in the sample solution for  task 4.1 . From this follows  u_0\hspace{0.15 cm}\underline{= 2 \, \text{V}}.


Multiplication with cosine

(2)  The band-pass spectrum can be represented with  f_{\rm T} = 4\, \text{kHz}  as follows:

W(f) = U(f- f_{\rm T}) + U(f+ f_{\rm T}) = U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].

According to the  Verschiebungssatz , the following then applies to the associated time signal:

w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = 2 u_0 \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t).

The graph shows

  • above the low–pass signal u(t),
  • then the oscillation c(t) = 2 · \cos(2 \pi fTt ),
  • below the band-pass signal  w(t) = u(t) \cdot c(t).


In particular, at time  t = 0 one obtains:

w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.

The time  t=62.5 \,{\rm µ} \text{s}  corresponds exactly to a quarter of the period of the signal  c(t):

w(t = 62.5 \hspace{0.05cm}{\rm µ s}) = 2 u_0 \cdot {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ s}} {500 \hspace{0.05cm}{\rm µ s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm µ s})
\Rightarrow \hspace{0.3cm}w(t = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.


(3)  Proposed solution 1 is correct:

  • If we compare the spectral function  W(f)  of this task with the spectrum  D(f)  in the sample solution to  task 4.1, we see that  w(t)  and  d(t)  are identical signals.
  • Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit  f_2 = 2 \,\text{kHz}  kann für das hier betrachtete Signal geschrieben werden:
w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .
  • Wegen der trigonometrischen Beziehung
\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big]
the above equation can be transformed:
w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \big [\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\big ] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.
  • This shows that both signals are actually identical   ⇒   Proposed solution 1:
w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).