Exercise 4.2: Rectangular Spectra
We consider two signals u(t) and w(t) with rectangular spectra U(f) and W(f) respectively.
- It is obvious that
- u(t)=u0⋅si(π⋅t/Tu)
- is a low-pass signal whose two parameters u0 and Tu are to be determined in subtask (1) .
- In contrast, the spectrum W(f) shows that w(t) describes a band-pass signal.
This task also refers to the band-pass signal
- d(t)=10V⋅si(5πf2t)−6V⋅si(3πf2t)
whose spectrum was determined in Exercise 4.1Z . Let f2=2 kHz.
Hints:
- This exercise belongs to the chapter Differences and Similarities of Low-Pass and Band-Pass Signals.
- In this task, the function \rm si(x) = \rm sin(x)/x = \rm sinc(x/π) is used.
- Consider the following trigonometric relationship in the solution:
- \sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big].
Questions
Solution
(1) The time T_u ⇒ first zero of the LP signal u(t) – is equal to the reciprocal of the width of the rectangular spectrum, i.e. 1/(2\, \text{kHz} ) \hspace{0.15 cm}\underline{= 0.5 \, \text{ms}}.
- The pulse amplitude is equal to the rectangular area as shown in the sample solution for task 4.1 . From this follows u_0\hspace{0.15 cm}\underline{= 2 \, \text{V}}.
(2) The band-pass spectrum can be represented with f_{\rm T} = 4\, \text{kHz} as follows:
- W(f) = U(f- f_{\rm T}) + U(f+ f_{\rm T}) = U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].
According to the Verschiebungssatz , the following then applies to the associated time signal:
- w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = 2 u_0 \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t).
The graph shows
- above the low–pass signal u(t),
- then the oscillation c(t) = 2 · \cos(2 \pi fTt ),
- below the band-pass signal w(t) = u(t) \cdot c(t).
In particular, at time t = 0 one obtains:
- w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.
The time t=62.5 \,{\rm µ} \text{s} corresponds exactly to a quarter of the period of the signal c(t):
- w(t = 62.5 \hspace{0.05cm}{\rm µ s}) = 2 u_0 \cdot {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ s}} {500 \hspace{0.05cm}{\rm µ s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm µ s})
- \Rightarrow \hspace{0.3cm}w(t = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.
(3) Proposed solution 1 is correct:
- If we compare the spectral function W(f) of this task with the spectrum D(f) in the sample solution to task 4.1, we see that w(t) and d(t) are identical signals.
- Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit f_2 = 2 \,\text{kHz} kann für das hier betrachtete Signal geschrieben werden:
- w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .
- Wegen der trigonometrischen Beziehung
- \sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big]
- the above equation can be transformed:
- w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \big [\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\big ] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.
- This shows that both signals are actually identical ⇒ Proposed solution 1:
- w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).