Linear Distortions

From LNTwww

Zusammenstellung wichtiger Beschreibungsgrößen


Linear system description

Now nonlinear distortions are excluded so that the system is fully described by the frequency response  $H(f)$ .

The generally complex frequency response can also be formulated as follows:

$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$

This yields the following descriptive quantities:

  • The magnitude  $|H(f)|$  is referred to as  amplitude response  and in logarithmic form as attenuation curve :
$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Dezibel \hspace{0.1cm}(dB) }.$$
  • The  phase response  $b(f)$  specifies the negative angle of  $H(f)$  dependent on  $f$  in the complex plane and with respect to the real axis:
$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$

Voraussetzungen für verzerrungsfreie Systeme


According to the explanations in the chapter Classification of the Distortions  there is a distortion-free system at hand if and only if all frequency components are uniformly damped and delayed:

$$y(t) = \alpha \cdot x(t - \tau).$$

According to the laws of system theory, the following must thus hold for the frequency response

$$H(f) = \alpha \cdot {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f \tau}$$

or expressed with functions  $a(f)$  and  $b(f)$:

  • The attenuation curve must be constant for all frequencies contained in the input signal:
$$a(f) = - \ln |H(f)| = - \ln \ \alpha = {\rm const.}$$
  • The phase response must either be zero in the region of interest (system with no transit time) or increase linearly with frequency  $(τ$  indicats the transit time of the system):
$$b(f) = 2 \pi f \tau = {\rm const.} \cdot f.$$

$\text{Definitionen:}$  For a distortion-free system, both requirements must be satisfied simultaneously. Violation of even one of these two conditions results in linear distortions which are distinguished according to their cause.

  • It comes to  attenuation distortions if in the frequency range of interest the attenuation curve is not constant:
$$a(f) \ne {\rm const.}$$
  • In contrast to this, there are  phase distortions  if the phase function is not linear with respect to $f$ :
$$b(f) \ne {\rm const.} \cdot f.$$


Anzumerken ist, dass bei allen realisierbaren Systemen – insbesondere den im  Kapitel 3  beschriebenen „minimalphasigen Systemen” – meist beide Verzerrungsformen gleichzeitig auftreten.

$\text{Definition:}$  Im Zeitbereich lautet die Bedingung für ein  distortion-free system:

$$h(t) = \alpha \cdot \delta(t - \tau),\hspace{0.4cm}\alpha \ne 0.$$

Ist zudem  $α = 1$  und  $τ = 0$, so liegt ein  ideales Übertragungssystem  vor. Dagegen gibt es immer dann lineare Verzerrungen, wenn

  • $h(t)$  eine zeitkontinuierliche Funktion ist, oder
  • $h(t)$  sich aus mehr als einer Diracfunktion zusammensetzt.


$\text{Beispiel 1:}$  Die folgende Skizze zeigt den Dämpfungsverlauf  $a(f)$  und den Phasenverlauf  $b(f)$  eines verzerrungsfreien Systems.

Voraussetzung für einen nichtverzerrenden Kanal
  • In einem Bereich von  $f_{\rm U}$  bis  $f_{\rm O}$  um die Trägerfrequenz  $f_{\rm T}$, in dem das Signal  $x(t)$  Anteile besitzt, ist  $a(f)$  konstant.
  • Aus dem angegebenen konstanten Dämpfungswert  $6 \ \rm dB$  folgt für den Amplitudengang:  $\vert H(f)\vert = 0.5$.
  • Das Ausgangsspektrum  $Y(f)$  ist somit betragsmäßig halb so groß wie die Spektralanteile  $X(f)$  des Eingangssignals.
  • Der Phasenverlauf  $b(f)$  steigt zwischen $f_{\rm U}$ und $f_{\rm O}$ linear mit der Frequenz an.
  • Dies hat zur Folge, dass alle Frequenzanteile um die gleiche Phasenlaufzeit  $τ$  verzögert werden, wobei  $τ$  durch die Steigung von  $b(f)$  festliegt.
  • Mit  $b(f) = 0$  würde sich ein laufzeitfreies System ergeben   ⇒   $τ = 0$.


Weiter erkennt man aus der Grafik folgende allgemeingültige Eigenschaften:

  • Der Dämpfungsverlauf  $a(f) = a(\hspace{-0.01cm}-\hspace{-0.08cm} f)$  ist eine gerade Funktion in  $f$.
  • Der Phasenverlauf  $b(f) = \hspace{-0.01cm}–\hspace{-0.01cm} b(\hspace{-0.01cm}-\hspace{-0.01cm}f)$  ist eine ungerade Funktion in  $f$.


Außerhalb des durch  $x(t)$  belegten Frequenzbandes müssen die Bedingungen „konstante Dämpfung” und „lineare Phase” nicht eingehalten werden. Man erkennt aus dem gestrichelt eingezeichneten Verlauf von  $a(f)$, dass hier sogar eine sehr viel höhere Dämpfung zweckmäßig ist, da dadurch die stets vorhandenen – in diesem Abschnitt aber nicht betrachteten – Rauschanteile außerhalb der Nutzbandbreite besser unterdrückt werden.

Dämpfungsverzerrungen


Wir betrachten im Folgenden als Eingangssignal die Summe zweier harmonischer Schwingungen:

$$x(t) = A_1 \cdot \cos(2 \pi f_1 \cdot t - \varphi_1) + A_2 \cdot \cos(2 \pi f_2 \cdot t - \varphi_2).$$

Ist das Ausgangssignal in der Form

$$y(t) = \alpha_1 \cdot A_1 \cdot \cos(2 \pi f_1 \cdot t - \varphi_1) + \alpha_2 \cdot A_2 \cdot \cos(2 \pi f_2 \cdot t - \varphi_2).$$

darstellbar und gilt gleichzeitig  $α_1 ≠ α_2$, so liegen  ausschließlich Dämpfungsverzerrungen  vor, da die Phasenwerte  $\varphi_1$  und  $\varphi_2$  durch das System nicht verändert werden.

Die Dämpfungskonstanten  $α_1$  und  $α_2$  können aus dem Amplitudengang  $|H(f)|$  ermittelt werden:

$$\alpha_1 = |H(f_1)|,\hspace{0.4cm}\alpha_2 = |H(f_2)|.$$

Ist der Dämpfungsverlauf  $a(f)$  in Neper gegeben, so gilt gleichermaßen  $(1 \ \rm dB$ entspricht $0.1151 \ \rm Np)$:

$$ \alpha_1 = {\rm e}^{-{\rm a}(f_1)},\hspace{0.4cm}\alpha_2 = {\rm e}^{-{\rm a}(f_2)}.$$

Hinweis:   Bei manchen Zeichenfonts sind "$a$" und "$α$" (alpha) schwer zu unterscheiden.

Auswirkungen von Dämpfungsverzerrungen

$\text{Beispiel 2:}$  Die Grafik zeigt das mit  $T_0 = 1\ \rm ms$  periodische Eingangssignal (blauer Verlauf)

$$x(t) = {1\, \rm V} \cdot \cos(2 \pi \cdot {1\, \rm kHz}\cdot t) + {1\, \rm V} \cdot \sin(2 \pi \cdot {2\, \rm kHz}\cdot t)$$

und das mit  $α_1 = 0.2$,  $α_2 = 0.5$  dämpfungsverzerrte Signal  $y(t)$.

Man erkennt signifikante Auswirkungen dieser Dämpfungsverzerrungen:

  • $y(t)$  hat nur noch wenig Ähnlichkeit mit  $x(t)$.
  • Dagegen würde sich mit  $α_1 = α_2 = α$  das verzerrungsfreie Signal  $y(t) = α · x(t)$  ergeben, aus dem man durch Verstärkung um  $1/α$  das ursprüngliche Signal  $x(t)$  wieder rekonstruieren könnte.


Wir weisen hier ausdrücklich auf das interaktive Applet  Lineare Verzerrungen periodischer Signale hin.


Phasenlaufzeit


Zur Definition der Phasenlaufzeit

Wir betrachten ein System mit  $|H(f)| = 1$, so dass für den Frequenzgang gilt:

$$H(f) = {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$
  • Die linke Grafik zeigt einen beispielhaften Phasenverlauf  $b(f)$. Ein solcher Phasenverlauf ist stets eine ungerade Funktion bezüglich der Frequenz  $f$:   $b(\hspace{-0.01cm}-\hspace{-0.08cm}f) = \hspace{0.08cm}-b(f)$.
  • Rechts ist die Funktion  $b(ω)$  skizziert, die gegenüber  $b(f)$  in der Abszisse um den Faktor $2π$ gestreckt ist.


Liegt am Eingang die harmonische Schwingung

$$x(t) = C \cdot \cos(2 \pi f_0 t - \varphi) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) = {C}/{2}\cdot {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \varphi} \cdot \delta(f + f_0) \hspace{0.01cm} + \hspace{0.01cm}{C}/{2}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \varphi} \cdot \delta(f - f_0)$$

an, so ergibt sich für die Spektralfunktion am Ausgang:

$$Y(f ) = {C}/{2}\cdot {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \varphi} \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} b(f_0)} \cdot \delta(f + f_0) \hspace{0.05cm} + \hspace{0.05cm}{C}/{2}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \varphi}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} b(f_0)} \cdot \delta(f - f_0).$$

Somit lautet das Ausgangssignal:

$$y(t) = C \cdot \cos(2 \pi f_0 t - b(f_0) - \varphi).$$

Dieses Signal kann auch in folgender Form dargestellt werden:

$$y(t) = C \cdot \cos(2 \pi f_0 ( t - \tau_{\rm P}(f_0)) - \varphi).$$

$\text{Definition:}$  Die  Phasenlaufzeit  gibt die Verzögerung an, die eine harmonische Schwingung mit der Frequenz  $f_0$  durch das System erfährt. Bei phasenverzerrenden Systemen ist die Phasenlaufzeit frequenzabhängig:

$$\tau_{\rm P}(f_0) = \frac{b(f_0)}{2\pi f_0} \hspace{0.4cm}{\rm bzw.} \hspace{0.4cm} \tau_{\rm P}(\omega_0) = \frac{b(\omega_0)}{\omega_0}.$$


Zu dieser Definition ist anzumerken:

  • In der  $b(ω)$–Darstellung kann die Phasenlaufzeit  $τ_{\rm P}$  als die Steigung der in der obigen Grafik grün eingezeichneten Geraden auch grafisch ermittelt werden.
  • Im Allgemeinen wird eine Schwingung mit anderer Frequenz auch eine andere Phasenlaufzeit zur Folge haben. Dies ist der physikalische Hintergrund für Phasenverzerrungen.
  • Gilt bei einem System  $b(ω) = τ_{\rm P} · ω$   bzw.   $b(f) = 2π · τ_{\rm P} · f$, so haben alle Frequenzen die gleiche Phasenlaufzeit  $τ_{\rm P}$. Ein solches System führt nicht zu Phasenverzerrungen.


Wir verweisen hier nochmals auf das interaktive Applet  Lineare Verzerrungen periodischer Signale.

Unterschied zwischen Phasen- und Gruppenlaufzeit


Eine weitere wichtige Systembeschreibungsgröße ist die Gruppenlaufzeit, die nicht mit der Phasenlaufzeit verwechselt werden darf.

$\text{Definition:}$  Die  Gruppenlaufzeit  ist wie folgt definiert:

$$\tau_{\rm G}(\omega_0) = \left[ \frac{ {\rm d}b(\omega)}{ {\rm d}\omega}\right ]_{\omega = \omega_0}.$$
  • Diese Größe wird vorwiegend zur Beschreibung von Schmalbandsystemen herangezogen.
  • Sie gibt die Verzögerung an, welche die Hüllkurve eines Bandpass-Systems erfährt.


Zur Definition der Gruppenlaufzeit

$\text{Beispiel 3:}$  Die Grafik zeigt die beispielhafte Phasenfunktion:

$$b(ω) = \arctan (ω/ω_0).$$
  • Diese steigt monoton von Null  $($bei  $ω = 0)$  bis  $π/2$  $($für  $ω → ∞)$.
  • Der Funktionswert bei  $ω = ω_0$  beträgt  $π/4$.


Setzen wir  $ω_0 = 2π · 1 \ \rm kHz$, so erhalten wir für die Phasenlaufzeit:

$$\tau_{\rm P}(\omega_0) = \frac{b(\omega_0)}{\omega_0}= \frac{\pi / 4}{2 \pi \cdot{1\, \rm kHz} } = {125\, \rm µ s}.$$

Diese Größe entspricht der Steigung der grün eingezeichneten Geraden in obiger Grafik.

Dagegen kennzeichnet die geringere Steigung der rot dargestellten Tangente die Gruppenlaufzeit:

$$\tau_{\rm G}(\omega_0) = \left[ \frac{ {\rm d}b(\omega)}{ {\rm d}\omega}\right ]_{\omega = \omega_0} = \left[ \frac{1}{\omega_0} \cdot \frac{1}{1 + \left(\omega / \omega_0\right]^2} \right ]_{\omega = \omega_0} = \frac{1}{2\omega_0}= \frac{1}{4 \pi \cdot{1\, \rm kHz} } \approx {80\, \rm µ s}.$$

Phasenverzerrungen


Zur Verdeutlichung dieses Sachverhaltes betrachten wir als Eingangssignal wieder die Summe zweier harmonischer Schwingungen:

$$x(t) = A_1 \cdot \cos(2 \pi f_1 \cdot t - \varphi_1) + A_2 \cdot \cos(2 \pi f_2 \cdot t - \varphi_2).$$

Ist bei diesem Eingangssignal das Ausgangssignal in der Form

$$y(t) = A_1 \cdot \cos(2 \pi f_1 \cdot (t - \tau_1) - \varphi_1) + A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2) - \varphi_2)$$

darstellbar und gilt gleichzeitig  $τ_1 ≠ τ_2$, so liegen  ausschließlich Phasenverzerrungen  vor.

Die beiden Phasenlaufzeiten  $τ_1 ≠ τ_2$  können aus dem Phasenverlauf (in Radian) ermittelt werden:

$$\tau_1 = \frac{b(f_1)}{2\pi f_1} , \hspace{0.4cm}\tau_2 = \frac{b(f_2)}{2\pi f_2}.$$
Auswirkungen von Phasenverzerrungen

$\text{Beispiel 4:}$  Die Grafik zeigt als blauen Kurvenverlauf das mit der Periodendauer  $T_0$  periodische Signal

$$x(t) = {1\, \rm V} \cdot \cos(2 \pi \cdot {1\, \rm kHz}\cdot t) + {1\, \rm V} \cdot \sin(2 \pi \cdot {2\, \rm kHz}\cdot t)$$

sowie das mit den Laufzeiten  $τ_1 = 0.7 \ \rm ms$  und  $τ_2 = 0.3 \ \rm ms$  phasenverzerrte Signal  $y(t)$  ⇒   rote Kurve.

  • Man erkennt deutlich die Auswirkungen der Phasenverzerrungen.
  • Mit  $τ_1 = τ_2 = τ$  ergäbe sich das verzerrungsfreie Signal
$$y(t) = x(t - τ).$$


Wir weisen nochmals auf das interaktive Applet  Lineare Verzerrungen periodischer Signale  hin.


Entzerrungsverfahren


Entzerrung von Signalen

Dieses für die Nachrichtentechnik sehr wichtige Verfahren soll hier nur kurz angerissen werden. Nähere Informationen hierzu finden Sie in den Büchern  Modulationsverfahren  und  Digitalsignalübertragung.

Wir gehen für diese Kurzbeschreibung von der skizzierten Konstellation aus:

  • $S_{\rm V}$  bezeichnet ein verzerrendes System,
  • während  $S_{\rm E}$  der Entzerrung dient.


Zu dieser Konstellation ist anzumerken:

  • Ist die Verzerrung nichtlinear, so muss auch die Entzerrung nichtlinear erfolgen.
  • Aber auch bei linearen Verzerrungen werden nichtlineare Entzerrungsverfahren eingesetzt, zum Beispiel Decision Feedback Equalization bei Digitalsystemen. Der Vorteil gegenüber linearer Entzerrung ist, dass es nicht zu einer Erhöhung der Rauschleistung kommt.
  • Ist  $S_{\rm V}$  ein lineares System mit Frequenzgang  $H_{\rm V}(f)$, so können mit dem inversen Frequenzgang  $H_{\rm E}(f) = 1/H_{\rm V}(f)$  die Verzerrungen vollständig eliminiert werden, und es gilt  $z(t) = x(t)$.
  • Voraussetzung hierfür ist allerdings, dass der Frequenzgang  $H_{\rm V}(f)$  im interessierenden Spektralbereich keine Nullstellen  besitzt, da sonst bei  $H_{\rm E}(f)$  Unendlichkeitsstellen erforderlich wären.
  • Bei Analogsystemen  bedeutet eine vollständige Entzerrung, dass sich  $z(t)$  von  $x(t)$  nur durch die unvermeidbaren Rauschanteile unterscheidet, und eventuell durch eine Laufzeit.
  • Bei Digitalsystemen  ist das Kriterium für eine vollständige Entzerrung weniger streng. Es muss dann nur sichergestellt werden, dass die Signale  $x(t)$  und  $z(t)$  zu den Detektionszeitpunkten übereinstimmen. Man spricht in diesem Zusammenhang von  Nyquistsystemen.

Aufgaben zum Kapitel


Aufgabe 2.5: Verzerrung und Entzerrung

Aufgabe 2.5Z: Nyquistentzerrung

Aufgabe 2.6: Zweiwegekanal

Aufgabe 2.6Z: Synchrondemodulator

Aufgabe 2.7: Nochmals Zweiwegekanal