Exercise 1.3: System Comparison at AWGN Channel

From LNTwww

Systemvergleich beim AWGN–Kanal

Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  AWGN–Kanal  aus und beschreiben folgendes doppelt–logarithmische Diagramm:

  • Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert)  $10 · \lg ρ_v$  in dB an.
  • Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen; für die normierte Leistungskenngröße gilt:
$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
  • In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$, der Kanaldämpfungsfaktor  $α_{\rm K}$, die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
  • Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$

In der Grafik sind zwei Systeme eingezeichnet, deren  $(x, y)$–Verlauf wie folgt beschrieben werden kann:

  • Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
$$y = x+1.$$
  • Entsprechend gilt für das  $\text{System B}$:
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$

Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:

$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$

So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$  bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.





Hinweise:


Fragebogen

1

Welcher Sinken–Störabstand (in dB) ergibt sich bei  $\text{System A}$  mit  $P_{\rm S}= 5 \;{\rm kW}$,   $\alpha_{\rm K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$,   $B_{\rm NF}= 5\; {\rm kHz}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

2

Es wird nun  $10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$  gefordert.  Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?

Erhöhung der Sendeleistung von  $P_{\rm S}= 5\text{ kW}$  auf $10\text{ kW}$ .
Erhöhung des Kanalübertragungsfaktors von  $α_{\rm K} = 0.001$  auf  $0.004$.
Reduzierung der Rauschleistungsdichte auf  $N_0=10^{–11 }\text{ W/Hz}$.
Erhöhung der NF–Bandbreite von  $B_{\rm NF}= 5\text{ kHz}$  auf  $\text{ kHz}$.

3

Welcher Störabstand ergibt sich bei  $\text{System B}$  mit  $10 · \lg ξ = 40\text{ dB}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

4

Gefordert wird der Störabstand  $10 · \lg ρ_v = 50\text{ dB}$.  Welche Sendeleistung  $P_{\rm S}$ genügt bei  $\text{System B}$, um diese Qualität zu erzielen?

$P_{\rm S} \ = \ $

$\ \text{ kW }$

5

Für welchen Wert von  $10 · \lg ξ$  ist die Verbesserung von  $\text{System B}$  gegenüber  $\text{System A}$  am größten?

$10 · \lg \hspace{0.05cm} ξ \ = \ $

$\ \text{dB}$


Musterlösung

(1)  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu

$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$
  • Damit ergibt sich der Hilfsordinatenwert  $y = 5$, was zum Sinken-Störabstand  $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$  führt.



(2)  Richtig sind die Alternativen 2 und 3:

Diese Forderung entspricht gegenüber dem bisherigen System einer Erhöhung des Störabstandes um  $10$  dB, so dass auch  $10 · \lg \hspace{0.05cm}ξ$  um  $10$  dB erhöht werden muss:

$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$

Ein  $10$–fach größerer  $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:

  • durch die Sendeleistung  $P_{\rm S} = 50$  kW  statt  $5$  kW,
  • durch den Kanalübertragungsfaktor  $α_{\rm K} = 0.00316$  anstelle von  $0.001$,
  • durch die Rauschleistungsdichte  $N_0 = 10^{ –11 }$  W/Hz  statt  $10^{ –10 }$  W/Hz,
  • durch die Bandbreite  $B_{\rm NF} = 0.5$  kHz  statt  $5$  kHz.


(3)  Für  $10 · \lg \hspace{0.05cm} ξ = 40$  dB ist die Hilfsgröße  $x = 4$.  Damit ergibt sich für die Hilfsgröße der Ordinate:

$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$
  • Dies entspricht dem Sinken–Störabstand  $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem  $\text{System A}$  um  $7$  dB.


(4)  Diese Problemstellung wird durch folgende Gleichung beschrieben:

$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$
  • Bei  $\text{System A}$  war hierfür  $10 · \lg \hspace{0.05cm} \xi = 40$  dB notwendig, was bei den weiter gegebenen Zahlenwerten durch  $P_{\rm S} = 5$  kW erreicht wurde. 
  • Nun kann die Sendeleistung um etwa  $12.1$  dB verringert werden:
$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$
  • Das bedeutet:  Bei  $\text{System B}$  wird mit nur  $6\%$  der Sendeleistung von  $\text{System A}$  – also mit nur  $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.



(5)  Wir bezeichnen mit  $V$  (steht für "Verbesserung")  den größeren Sinken–Störabstand von  $\text{System B}$  gegenüber  $\text{System A}$ :

$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$
  • Durch Nullsetzen der Ableitung ergibt sich derjenige  $x$–Wert, der zur maximalen Verbesserung führt:
$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$
  • Es ergibt sich also genau der in der Teilaufgabe  (4)  behandelte Fall mit  $10 · \lg ρ_υ = 50$  dB, während der Störabstand bei  $\text{System A}$  nur  $37.9$  dB beträgt. 
  • Die Verbesserung ist demnach  $12.1$  dB.