Exercise 1.2: Distortions? Or no Distortion?

From LNTwww
Revision as of 14:13, 2 November 2021 by Reed (talk | contribs)

Observed Sink signals for the
given input signal   $q(t)$

The communication systems  $S_1$,  $S_2$  and  $S_3$  analyzed in terms of the distortions they cause. For this purpose, the cosine-shaped test signal with signal frequency $f_{\rm N} = 1\text{ kHz}$  is applied to the input of each system:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

The three signals at the system output are measured, as shown in the graph:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

The noise components that are always present in practice will be assumed to be negligible here.
Hints:

  • This exercise belongs to the chapter  Quality criteria.  Particular reference is made to the page   Signal-to-noise power ratio  and to the chapter   Non-linear distortions  in the book "Linear and Time-Invariant Systems".
  • For nonlinear distortion, the sink SNR is  $ρ_v = 1/K^2$, where the distortion factor  $K$  is the ratio of the rms values of all harmonics to the rms value of the fundamental frequency.


Questions

1

What statements can be made about the  $S_1$  system after this measurement?

$S_1$  could be an ideal system.
$S_1$  could be a distortionless system.
$S_1$  could be a linearly distorting system.
$S_1$  could be a nonlinearly distorting system.

2

Write the second signal in the form  $v_2(t) = α · q(t - τ)$  and determine its paramaters.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm µ s$

3

{What statements can be made about the  $S_2$  system after this measurement?

$S_2$  could be an ideal system.
$S_2$  could be a distortionless system.
$S_2$  could be a linearly distorting system.
$S_2$  could be a nonlinearly distorting system.

4

What kind of distortions are present in System  $S_3$?

They are linear distortions.
They are nonlinear distortions.

5

Calculate the sink SNR  $ρ_{v3}$  of System  $S_3$.

$ρ_{v3} \ = \ $


Solution

(1)&nbspAnswers 1, 2 and 3 are correct:

  • System  $S_1$  could well be an ideal system, namely if for all frequencies $f_{\rm N}$  the condition   $v(t) = q(t)$  were satisfied.
  • The second alternative is also possible, since the ideal system is a special case of distortion-free systems.
  • However, if at a different message frequency $f_{\rm N} \ne 1$  kHz the condition   $v(t) = q(t)$  were not satisfied, then a linearly distorting system would exist whose frequency response would happen to be equal to $1$  at frequency $f_{\rm N}$ .
  • In contrast, a nonlinearly distorting system (Answer 4) can be excluded due to the lack of harmonics.


(2)  Entsprechend den Ausführungen im Kapitel „Harmonische Schwingung” im Buch „Signaldarstellung” gelten folgende Gleichungen:

$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
  • Angewandt auf das vorliegende Beispiel erhält man
$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
  • Der Dämpfungsfaktor des Systems hat somit den Wert  $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, und für die Phase gilt:
$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$
  • Die Umformung  $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$  erlaubt Aussagen über die Laufzeit:
$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Das System  $S_2$  ist nach den Ausführungen zur Teilaufgabe  (1)  weder ideal noch nichtlinear verzerrend.
  • Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von  $α$  und  $τ$   für alle Frequenzen erhalten bleiben oder nicht.
  • Mit einer einzigen Messung bei nur einer Frequenz kann allerdings diese Frage nicht geklärt werden.


(4)  Das Signal  $v_3(t)$  beinhaltet eine Oberwelle dritter Ordnung.  Deshalb ist die Verzerrung nichtlinear   ⇒  Lösungsvorschlag 2.


(5)  Mit den Amplituden  $A_1 = 1.5 \ \rm V$  und  $A_3 = -0.3\ \rm V$  erhält man für den Klirrfaktor:

$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
  • Deshalb beträgt das Sinken–SNR entsprechend der angegebenen Gleichung  $ρ_{v3} = 1/K_3^{ 2 } = 25$.


Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung.

  • Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:
$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
  • Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb:  
$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  • Damit ergibt sich die Verzerrungsleistung:
$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
  • Mit der Leistung des Quellensignals,
$$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
erhält man unter Berücksichtigung des gerade berechneten Dämpfungsfaktors  $ \alpha = 0.75 $:
$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$