Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.1Z: Influence of the Message Phase in Phase Modulation

From LNTwww
Revision as of 16:51, 9 April 2022 by Reed (talk | contribs)


Two PM signal waveforms

We will now consider the phase modulation of diverse oscillations

q(t)=cos(ωNt+ϕN).

The source signal is represented here in normalized form with (amplitude  1) , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  η  as follows:

s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.
  • The signal  s_1(t)  shown in the upper graph is characterized by the paramet values  ϕ_{\rm N} = -90^\circ  und  η_1 = 2 .
  • The frequency  f_{\rm N}  of this sinusoidal source signal as well as the carrier frequency  f_{\rm T}  can be determined from the signal section of duration  200 \ \rm µ s  represented here.
  • The signal  s_2(t)  possibly differs from  s_1(t)  due to a different message phase  ϕ_{\rm N}  and modulation index  η.  All other system parameters are unchanged from  s_1(t) .





Hints:


Questions

1

Find the frequency  f_{\rm N}  of the message signal.

f_{\rm N} \ = \

\ \rm kHz

2

What is the carrier frequency f_{\rm T}?

f_{\rm T} \ = \

\ \rm kHz

3

What is the maximum phase deviation  ϕ_{\rm max}  between  z(t)  and  s(t)?

ϕ_{\rm max} \ = \

\ \rm rad

4

What is the maximum time shift of the zero crossings that this phase results in?

Δt_{\rm max} \ = \

\ \rm µ s

5

Determine the modulation index  η_2  for the signal  s_2(t).

η_2 \ = \

6

What is the phase  ϕ_{\rm N2}  of the underlying source signal  q(t) for  s_2(t) ?

ϕ_{\rm N2} \ = \

\ \rm Grad


Solution

(1)  It can be seen from the sketch that the represented section of the signal of duration  200 \ \rm µ s  corresponds exactly to the period duration of the sinusoidal source signal. From this follows  f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}.

  • At times  t = 0t = 100 \ \rm µ s  and  t = 200 \ \rm µ s , the signals   z(t)  and  s(t)  are synchronous in phase.
  • In the first half-wave of   q(t) , the zero crossings of   s(t) come slightly earlier than those of the carrier signal  z(t)   ⇒   positive phase.
  • In contrast, in the range from  t = 100 \ \rm µ s  to  t = 200 \ \rm µ s , the phase  ϕ(t) < 0.


(2)  f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}, holds,

  • since exactly   10  periods can be counted in the shown section of   z(t) of duration  200 \ \rm µ s .


(3)  The maximum relative phase deviation is   ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}.


(4)  Since the period of the carrier is   T_0 = 20 \ \rm µ s , we obtain  Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm µ s}.


(5)  The maximum phase deviation (shift in the zero intercepts) is exactly the same for   s_2(t)  as for  s_1(t)

  • From this, we can conclude that  η_2 = η_1\hspace{0.15cm}\underline{ = 2} .


(6)  The signal  s_2(t)  is shifted to the right by   25 \ \rm µ s  compared to   s_1(t) . Therefore, the same must be true for the source signals:

q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.
  • This corresponds to the phase position ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}.