Exercise 4.12Z: 4-QAM Systems again

From LNTwww
Revision as of 15:40, 19 April 2022 by Guenter (talk | contribs)

Phase diagrams for 4–QAM, ideal and with degradations

Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter,  where an optimal realization form was chosen in the case of AWGN noise under the constraint of  "peak limiting":

  • rectangular basic transmision pulse of symbol duration  $T$,
  • rectangular impulse response of the matched filter of the same width  $T$.


All phase diagrams presented here –  $\rm (A)$  and  $\rm (B)$  and  $\rm (C)$  – refer to the detection time points only.  Thus,  the transitions between the individual discrete-time points are not plotted in this phase diagram.

  • An AWGN channel with   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   is present.
  • Accordingly,  for the bit error probability of the first system considered  $\rm (A)$ :
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$

The phase diagrams  $\rm (B)$  and  $\rm (C)$  belong to two systems where the 4-QAM was not optimally realized.  AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Reference is also made to the page  "Phase offset between transmitter and receiver" in the book  "Digital Signal Transmission".
  • Causes and Effects of intersymbol interference are explained in the  section with the same name  of the book  "Digital Signal Transmission".
  • The crosses in the graphs mark possible points in the phase diagrams if no AWGN noise were present.
  • The point clouds due to the AWGN noise all have the same diameter.  The red cloud appears slightly smaller than the others only because  "red"  is harder to see on a black background.
  • As a sufficiently good approximation for the complementary Gaussian error integral,  you can use:
$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$


Questions

1

Using the given approximation,  calculate the bit error probability of system  $\rm (A)$.

System  $\rm (A):\ \ p_{\rm B} \ = \ $

$\ \cdot 10^{-5}$

2

What are the properties of system  $\rm (B)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

3

What are the properties of system  $\rm (C)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

4

Which statements about the error probabilities are correct ?

All three systems have the same bit error probability.
The error probability of system  $\rm (A)$  is the smallest.
System  $\rm (B)$  has a larger bit error probability than system  $\rm (C)$.


Solution

(1)  From   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ ,   ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm} follows.$ 

  • With the given approximation, it further holds that:
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} = {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
  • The exact value  $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$  is only slightly smaller.


(2)  Answer 1 is correct:

  • Due to a phase shift of   $Δϕ_{\rm T} = 30^\circ$ , the phase diagram was rotated, resulting in degradation.
  • The two components   $\rm I$  and  $\rm Q$  influence each other, but there is no pulse interference as in system  $\rm (C)$.
  • A "Nyquist system" never leads to pulse interference.


(3)  Answer 2 is correct:

  • In particular, the nine crosses in each quadrant of the phase diagram  $\rm (C)$, which mark the noise-free case, show the influence of impulse interference.
  • Instead of the optimal receiver filter for a rectangular fundamental transmission pulse  $g_s(t)$   ⇒   rectangular impulse response   $h_{\rm E}(t)$ , a Gaussian low-pass filter with (normalized) cutoff frequency   $f_{\rm G} · T = 0.6$  was used here.
  • This causes pulse interference. Even without noise, there are nine crosses in each quadrant indicating one leader and one follower per component.


(4)  Answers 2 and 3 are correct:

  • Systems  $\rm (B)$  and  $\rm (C)$  are not optimal.  This already shows that statement 1 is not correct.
  • In contrast, Answer 2 is right.  Every 4-QAM system, which follows the matched filter principle and additionally fulfills the first Nyquist criterion, has the error probability given above
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
  • Thus, the so-called "root-Nyquist configuration", which was treated for example in Exercise 4.12, has exactly the same error probability as system  $\rm (A)$  and also the same phase diagram at the detection times. The transitions between the individual points are nevertheless different.
  • The third statement is also true. One can already recognize incorrect decisions from the phase diagram of system  $\rm (B)$ , and this will always be the case when the points do not match the quadrants in terms of color.


The error probabilities of system  $\rm (B)$  and system  $\rm (C)$  are derived in the book "Digital Signal Transmission". The results of a system simulation confirm the above statements:

  • System  $\rm (A)$:     $p_{\rm B} ≈ 3.3 · 10^{–5}$ (see Question 1),
  • System  $\rm (B)$:     $p_{\rm B} ≈ 3.5 · 10^{–2}$,
  • System  $\rm (C)$:     $p_{\rm B} ≈ 2.4 · 10^{–4}$.