Exercise 4.18Z: BER of Coherent and Non-Coherent FSK

From LNTwww
Revision as of 18:26, 16 August 2022 by Hwang (talk | contribs)

Bit error probabilities of
BPSK and BFSK

The diagram shows the bit error probability for a binary  "FSK modulation"  (BFSK) with

  • coherent demodulation or
  • incoherent demodulation


in comparison with binary phase modulation (BPSK). Orthogonality is always assumed. For coherent demodulation, the modulation index  $h$  can be a multiple of  $0.5$,  so that the average curve is also valid for Minimum Shift Keying  (MSK). On the other hand, for non-coherent demodulation of an FSK, the modulation index  $h$  must be a multiple of  $1$. 

This system comparison is based on the AWGN channel, characterized by the ratio  $E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows for

  • Binary Frequency Shift Keying  (BFSK) with coherent demodulation:
$$p_{\rm B} = {\rm Q } \left ( \sqrt {{E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$
  • Binary Frequency Shift Keying  (BFSK) with incoherent demodulation:
$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
  • Binary Phase Shift Keying  (BPSK), only coherent demodulation possible:
$$p_{\rm B} = {\rm Q } \left ( \sqrt {{2 \cdot E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$

For BPSK, the log ratio  $10 \cdot {\rm lg} \, (E_{\rm B}/N_0)$  must be at least  $9.6 \, \rm dB$  so that the bit error probability does not exceed the value  $p_{\rm B} = 10^{\rm -5}$. 

For binary modulation methods,  $p_{\rm B}$  can also be replaced by  $p_{\rm S}$  and  $E_{\rm B}$  by  $E_{\rm S}$.  Then we speak of the symbol error probability  $p_{\rm S}$  and the symbol energy  $E_{\rm S}$.




Notes:



Questions

1

For FSK and  coherent demodulation,  which  $E_{\rm B}/N_0$  is required to satisfy the requirement  $p_{\rm B} ≤ 10^{\rm -5}$?

$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

2

Are the following statements correct:   The same result as in (1) is obtained for

the coherent FSK with modulation index  $\eta = 0.7$,
the coherent FSK with modulation index  $\eta = 1$.

3

For FSK with modulation index  $h = 1$  and non-coherent demodulation,  which  $E_{\rm B}/N_0$  is required for  $p_{\rm B} ≤ 10^{\rm -5}$  to be satisfied?

$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

4

Welche Fehlerwahrscheinlichkeit ergibt sich mit  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$  für FSK und nichtkohärente Demodulation?

$p_{\rm B} \ = \ $

$\ \%$


Musterlösung

(1)  Ein Vergleich der Gleichungen auf der Angabenseite macht deutlich, dass bei binärer FSK mit kohärenter Demodulation das AWGN–Verhältnis $E_{\rm B}/N_0$ verdoppelt werden muss, damit die gleiche Fehlerwahrscheinlichkeit wie bei BPSK erreicht wird.

  • In anderen Worten:   Die kohärente BFSK–Kurve liegt um $10 \cdot {\rm lg} \, (2) \approx 3 \ \rm dB$ rechts von der BPSK–Kurve. Um $p_{\rm B} ≤ 10^{\rm –5}$ zu garantieren, muss gelten:
$$10 \cdot {\rm lg}\hspace{0.05cm} {E_{\rm B}}/ {N_{\rm 0}}\approx 9.6\,\,{\rm dB} + 3\,\,{\rm dB}\hspace{0.15cm} \underline{=12.6\,\,{\rm dB}}\hspace{0.05cm}.$$


(2)  Richtig ist der Lösungsvorschlag 2:

  • Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $h = 0.5$), sondern für jede Form von orthogonaler FSK.
  • Eine solche liegt vor, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist, zum Beispiel für $h = 1$.
  • Mit $h = 0.7$ ergibt sich keine orthogonale FSK.
  • Es kann gezeigt werden, dass sich für $h = 0.7$ sogar eine kleinere Fehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt.
  • Mit $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ erreicht man hier sogar $p_{\rm B} \approx 10^{\rm –6}$, also eine Verbesserung um eine Zehnerpotenz.



(3)  Aus der Umkehrfunktion der angegebenen Gleichung erhält man:

$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/ {N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.09cm} {E_{\rm B}}/ {N_{\rm 0}}\hspace{0.15cm} \underline{\approx 13.4\,\,{\rm dB}}\hspace{0.05cm}.$$


(4)  Aus $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ folgt:

$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{E_{\rm B}} {2 \cdot N_{\rm 0}}\approx 8.4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4}\hspace{0.15cm} \underline{ \approx 0.012 \%}\hspace{0.05cm}.$$

Das heißt:   Bei gleichem $E_{\rm B}/N_0$ wird die Fehlerwahrscheinlichkeit bei der nichtkohärenten Demodulation gegenüber der kohärenten Demodulation gemäß Teilaufgabe (1) um etwa den Faktor 11 vergrößert.