Exercise 4.11: On-Off Keying and Binary Phase Shift Keying
From LNTwww
The graphic shows signal space constellations for carrier-modulated modulation methods:
- "On–off keying" $\rm (OOK)$, also known as "Amplitude Shift Keying" $\rm (ASK)$ in some books,
- "Binary Phase Shift Keying" $\rm (BPSK)$.
For the error probability calculation we start from the AWGN channel. In this case the error probability is
$($related to symbols or to bits alike$)$:
- $$p_{\rm S} = p_{\rm B} = {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) \hspace{0.05cm}.$$
Here
- $d$ denotes the distance between the signal space points, and
- $\sigma_n^2 = N_0/2$ the variance of the AWGN noise.
In the questions from (3) onwards, reference is also made to the mean symbol energy $E_{\rm S}$.
Notes:
- The exercise belongs to the chapter "Carrier Frequency Systems with Coherent Demodulation".
- Reference is also made to the chapter "Linear Digital Modulation – Coherent Demodulation" and the chapter "Linear Digital Modulation" in the book "Modulation Methods".
- For the complementary Gaussian error function, use the following approximation:
- $${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
Questions
Solution
(1) Both "'On–off Keying" $\rm (OOK)$ and "Binary Phase Shift Keying" $\rm (BPSK)$ are binary modulation methods:
- $$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$
(2) Solution 2 is correct, recognizable by the imaginary basis function $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.
- If described in the band-pass range, the basis functions would be real: "cosine" and "(minus) sine".
(3) The given equation is for "On–off Keying" with
- $d = \sqrt {E}$,
- $E_{\rm S} = E/2$ (assuming equally probable symbols $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$),
- $\sigma_n^2 = N_0/2$:
- $$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right )= {\rm Q} \left ( \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
- For $E_{\rm S}/N_0 = 9 = 3^2$ this results in:
- $$p_{\rm S} = {\rm Q} (3) \approx \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}} \hspace{0.05cm}.$$
- Accordingly, for $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$ ⇒ $E_{\rm S}/N_0 = 15.85$:
- $$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}} \hspace{0.05cm}.$$
(4) In contrast to subtask (3), "Binary Phase Shift Keying" $\rm (BPSK)$ applies
- $d = 2 \cdot \sqrt {E}$,
- $E_{\rm S} = E$,
both even independent of the occurrence probabilities for $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$.
- It follows:
- $$p_{\rm S} = {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
- With $E_{\rm S}/N_0 = 9$, this results in the numerical value:
- $$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
- And with $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$ ⇒ $2E_{\rm S}/N_0 = 31.7$:
- $$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$