Exercise 5.2: Error Correlation Function

From LNTwww
Revision as of 03:38, 18 September 2022 by Hwang (talk | contribs)

Error distance probability & error correlation function

For the characterization of digital channel models one uses among other things

  • the  "error correlation function"  $\rm (ECF)$
$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  • the  "error distance probabilities"
$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge 1\hspace{0.05cm}.$$

Here denote:

  • $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
  • $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.


Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 

The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.

  • Some data are missing in the table.
  • These values are to be calculated from the given values.



Note:  The exercise covers the subject matter of the chapter  "Parameters of Digital Channel Models".


Questions

1

Which value results for the mean error probability?

$p_{\rm M} \ = \ $

2

Which value results for the mean error distance?

${\rm E}\big[a\big] \ = \ $

3

Calculate the value of the error correlation function  $\rm (ECF)$  for  $k = 1$.

$\varphi_e(k = 1) \ = \ $

4

What is the approximation for the probability of the error distance  $a = 2$?

${\rm Pr}(a = 2) \ = \ $


Solution

(1)  The mean error probability is equal to the ECF value for  $k = 0$.  Namely,  because of  $e_{\nu} ∈ \{0, 1\}$:

$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} \hspace{0.05cm}.$$


(2)  The mean  $($or:  "average"$)$  error distance is equal to the reciprocal of the mean error probability.  That is:

$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$


(3)  According to the definition equation and  "Bayes' theorem",  the following result is obtained:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot (e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm Pr}(e_{\nu} = 1) \hspace{0.05cm}.$$
  • The first probability is equal to  ${\rm Pr}(a = 1)$  and the second probability is equal to  $p_{\rm M}$:
$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} \hspace{0.05cm}.$$


(4)  The ECF value  $\varphi_e(k = 2)$  can be interpreted  (approximately)  as follows:

$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
  • This probability is composed of  "at time  $\nu+1$  an error occurs"  and  "At time  $\nu+1$  there is no error":
$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
  • In the calculation,  it was assumed that the individual error distances are statistically independent of each other.
  1. However,  this assumption is valid only for a special class of channel models called  "renewing".
  2. The burst error model considered here does not satisfy this condition.
  3. The actual probability  ${\rm Pr}(a = 2) = 0.1675$  therefore deviates slightly from the value calculated here  $(0.1715)$.