Exercise 1.1: ISDN Supply Lines
In ISDN (Integrated Services Digital Network) the final branch (near the subscriber) is connected to a local exchange (OVSt) by a copper twisted pair, whereby two twisted pairs are twisted into a so-called star quad. Several such star quads are then combined to form a basic bundle, and several basic bundles are combined to form a main bundle (see graphic).
In the network of Deutsche Telekom (formerly: Deutsche Bundespost), mostly copper lines with 0.4 mm core diameter are found, for whose attenuation and phase function the following equations are given in [PW95]:
- $$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm},$$
- $$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm}.$$
Hierbei bezeichnet $l$ die Leitungslänge.
Hinweise:
- Die Aufgabe gehört zum Kapitel "General Description of ISDN".
- Insbesondere wird Bezug genommen auf die Seite Netzinfrastruktur für das ISDN.
- Weitere Informationen zur Dämpfung von Kupferleitungen finden Sie im Kapitel "Eigenschaften elektrischer Leitungen" des Buches Lineare zeitinvariante Systeme.
- [PW95] bezieht sich auf die folgende Veröffentlichung: Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
Fragebogen
Musterlösung
(2) Richtig sind die Lösungsvorschläge 1 und 2:
- Bei Zweidrahtübertragung ist ein Richtungstrennungsverfahren erforderlich, nämlich die so genannte Gabelschaltung. Diese hat die Aufgabe, dass beim Empfänger $\rm A$ nur das Sendesignal von Teilnehmer $\rm B$ ankommt, nicht jedoch das eigene Sendesignal. Dies gelingt bei schmalbandigen Signalen – zum Beispiel Sprache – im allgemeinen recht gut, jedoch nicht vollständig.
- Aufgrund von induktiven und kapazitiven Kopplungen kann es zu Übersprechen von der im gleichen Sternvierer befindlichen Doppelader kommen, wobei Nahnebensprechen (das heißt: der störende Sender und der gestörte Empfänger liegen örtlich zusammen) zu größeren Beeinträchtigungen führt als Fernnebensprechen.
- Nicht zutreffend ist dagegen der letzte Lösungsvorschlag. Impulsinterferenzen – also die gegenseitige störende Beeinflussung benachbarter Symbole – können zwar durchaus auftreten, hängen aber nicht mit der Zweidrahtübertragung zusammen. Der Grund hierfür sind vielmehr (lineare) Verzerrungen aufgrund des spezifischen Dämpfungs– und Phasenverlaufs.
(3) Die Gleichsignal–Dämpfung um den Faktor $4$ kann wie folgt ausgedrückt werden:
- $$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
- Mit dem angegebenen Koeffizienten $\text{5.1 dB/km}$ ergibt sich somit die Leitungslänge $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.
(4) Mit den angegebenen Gleichungen und $ l = 2.36 \ \rm km$ erhält man:
- $$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
- $$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$