Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.09: Recursive Systematic Convolutional Codes

From LNTwww
Revision as of 15:42, 14 December 2022 by Guenter (talk | contribs)

State transition diagram
of an RSC code

In  Exercise 4.8  important properties of convolutional codes have already been derived from the state transition diagram,  assuming a non-recursive filter structure.

Now a rate  1/2  RSC code is treated in a similar manner.  Here  RSC  stands for  "recursive systematic convolutional".

The transfer function matrix of an RSC convolutional code can be specified as follows:

G(D)=[1,G(2)(D)/G(1)(D)].

Otherwise,  exactly the same conditions apply here as in Exercise 4.8.  We refer again to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of the D–transform to rate 1/n convolution encoders"
  6. "Filter structure with fractional–rational transfer function"


In the state transition diagram,  two arrows go from each state.  The label is  "u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}".  For a systematic code,  this involves:

  • The first code bit is identical to the information bit:   \hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}.
  • The second code bit is the parity-check bit:   \hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}.




Hints:

  • The exercise refers to the chapter  "Basics of Turbo Codes".
  • Similar exercises can be found in chapters 3.1 through 3.3.
  • The following vectorial quantities are used in the questions for this exercise:
    • the information sequence:  \hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} ),
    • the parity-check sequence:  \hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm}),
    • the impulse response:  \hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm} this is equal to the parity sequence \underline{p}  for  \underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} ).


Questions

1

What is the impulse response  \underline{g} ?

  \underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm}) holds.
  \underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}) holds.

2

It holds  \underline{u} = (1, \, 1, \, 0, \, 1). Which statements hold for the parity sequence  \underline{p} ?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}) holds.
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}) holds.
With limited information sequence  \underline{u}  is always also  \underline{p}  limited.

3

What is the  D–transfer function  G(D)?

  G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm} holds.
  G(D) = (1 + D^2)/(1 + D + D^2) holds.
  G(D) = (1 + D + D^2)/(1 + D^2) holds.

4

Now let  \underline{u} = (1, \, 1, \, 1) hold. Which statements hold for the parity sequence  \underline{p}?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}) holds.
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}) holds.
With unlimited impulse response  \underline{g}  is always also  \underline{p}  unlimited.

5

What is the free distance  d_{\rm F}  of this RSC encoder?

d_{\rm F} \ = \


Solution

(1)  Tracing the transitions in the state diagram for the sequence  \underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)  at the input, we get the path

S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}
  • For each transition, the first code symbol x_i^{(1)} is equal to the information bit u_i and the code symbol x_i^{(2)} indicates the parity-check bit p_i.
  • This gives the result corresponding to solution proposition 1:
\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.
  • For any RSC code, the impulse response \underline{g} is infinite in length and becomes periodic at some point, in this example with period  P = 3  and  "0, \, 1, \, 1".


Clarification of  \underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}

(2)  The graph shows the solution of this exercise according to the equation  \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}.

  • Here the generator matrix  \mathbf{G}  is infinitely extended downward and to the right.
  • The correct solution is proposal 2.


(3)  Correct are the proposed solutions 1 and 2:

  • Between the impulse response \underline{g} and the D–transfer function \mathbf{G}(D) there is the relation according to the first proposed solution:
\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, ... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \hspace{0.05cm} \text{...} \hspace{0.05cm}.
  • Let us now examine the second proposal:
G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.
  • The following calculation shows that this equation is indeed true:
(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =
=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}
+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...}
+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}
=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.
  • But since equation (2) is true, the last equation must be false.


(4)  Correct is only the proposed solution 1:

  • From \underline{u} = (1, \, 1, \, 1) follows U(D) = 1 + D + D^2. Thus also holds:
P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}.
  • If the variables  u_i  and  g_i  were real-valued, the (discrete) convolution  \underline{p} = \underline{u} * \underline{g}  would always lead to a broadening  ⇒   \underline{p}  in this case would be broader than  \underline{u}  and also broader than  \underline{g}.
  • On the other hand, for  u_i ∈ {\rm GF}(2)  and  g_i ∈ {\rm GF}(2)  it may (but need not) happen that even with unbounded  \underline{u}  or for unbounded  \underline{g}  the convolution product  \underline{p} = \underline{u} * \underline{g}  is bounded.
Verdeutlichung von  \underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}
  • The result is finally checked according to the equation \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G} is checked.


(5)  Following a similar procedure as in "Exercise A4.8, (4)", one can see:

  • The free distance is again determined by the path  S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}.
  • But the associated code sequence  \underline{x}  is now  " 00 \ 11 \ 10 \ 11 \ 00 \ ... ".
  • This gives the free distance to  d_{\rm F} \ \underline{= 5}.
  • In contrast, in the non-recursive code (exercise 4.8), the free distance was  d_{\rm F} = 3.