Exercise 4.4: About the Quantization Noise
Zur Berechnung der Quantisierungsrauschleistung $P_Q$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{max}$ und der Periodendauer $T_0$ aus.
Im mittleren Zeitbereich $–T_0/2 ≤ t ≤ T_0/2$ gilt: $$q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$$ Dessen Leistung wird hier mit $P_S$ bezeichnet.
Dieses Signal wird entsprechend der Grafik mit $M = 6$ Stufen quantisiert. Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite $Δ = 2/M · Q_{max}$ aufweist. Die Grafik zeigt diesen Sachverhalt für $Q_{max} = q_{max} = 6 V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe e) ausgegangen werden.
Die so genannte Quantisierungsrauschleistung ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_Q(t) – q(t)$ definiert. Es gilt $$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$ wobei die Zeit $T_0'$ geeignet zu wählen ist. Als Quantisierungs–SNR bezeichnet man das Verhältnis $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},$$ das meist in dB angegeben wird.
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.1.
Fragebogen
Musterlösung
2. Wir gehen hier von $Q_{max} = q_{max} = 6 V$ aus. Damit ergibt sich das sägezahnförmige Fehlersignal $ε(t)$ zwischen $±1V$ und der Periodendauer $T0' = T_0/6$.
Richtig sind also die Lösungsvorschläge 1, 3 und.4. 3. 4. 5. 6. 7.