Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.7: Some Entropy Calculations

From LNTwww

Diagram: Entropies and information

We consider the two random variables  XY  and  UV  with the following two-dimensional probability mass functions:

PXY(X,Y)=(0.180.160.020.64)
PUV(U,V)=(0.0680.1320.2720.528)

For the random variable  XY  the following are to be calculated in this exercise:

  • the joint entropy:
H(XY)=E[log2PXY(X,Y)],
  • the two individual entropies:
H(X)=E[log2PX(X)],
H(Y)=E[log2PY(Y)].

From this, the following descriptive variables can also be determined very easily according to the above scheme – shown for the random variable  XY:

  • the conditional entropies:
H(X|Y)=E[log2PX|Y(X|Y)],
H(Y|X)=E[log2PY|X(Y|X)],
  • the mutual information between X and Y:
I(X;Y)=E[log2PXY(X,Y)PX(X)PY(Y)].

Finally, verify qualitative statements regarding the second random variable  UV .




Hints:


Questions

1

Calculate the joint entropy.

H(XY) = 

 bit

2

What are the entropies of the one-dimensional random variables  X  and  Y ?

H(X) = 

 bit
H(Y) = 

 bit

3

How large is the mutual information between the random variables  X  and  Y?

I(X;Y) = 

 bit

4

Calculate the two conditional entropies.

H(X|Y) = 

 bit
H(Y|X) = 

 bit

5

Which of the following statements are true for the two-dimensional random variable UV?

The one-dimensional random variables  U  and  V  are statistically independent.
The mutual information of  U  and  V  is  I(U;V)=0.
For the compound entropy  H(UV)=H(XY) holds.
The relations  H(U|V)=H(U)  and  H(V|U)=H(V).


Solution

(1)  From the given composite probability we obtain

H(XY)=0.18log210.18+0.16log210.16+0.02log210.02+0.64log210.64=1.393(bit)_.


(2)  The one-dimensional probability functions are  PX(X)=[0.2, 0.8]  and  PY(Y)=[0.34, 0.66].  From this follows:

H(X)=0.2log210.2+0.8log210.8=0.722(bit)_,
H(Y)=0.34log210.34+0.66log210.66=0.925(bit)_.


(3)  From the graph on the information page you can see the relationship:

I(X;Y)=H(X)+H(Y)H(XY)=0.722(bit)+0.925(bit)1.393(bit)=0.254(bit)_.


(4)  Similarly, according to the graph on the information page:

H(XY)=H(XY)H(Y)=1.3930.925=0.468(bit)_,
H(YX)=H(XY)H(X)=1.3930.722=0.671(bit)_
Entropy values for the random variables XY and UV
  • The left diagram summarises the results of subtasks  (1), ... ,  (4)  true to scale.
  • The joint entropy is highlighted in grey and the mutual information in yellow.
  • A red background refers to the random variable  X,  and a green one to  Y.  Hatched fields indicate a conditional entropy.


The right graph describes the same situation for the random variable  UV   ⇒   subtask  (5).


(5)  According to the diagram on the right,
statements 1, 2 and 4 are correct:

  • One recognises the validity of  PUV=PU·PV   ⇒   mutual information I(U;V)=0  by the fact that the second row of the  PUV matrix differs from the first row only by a constant factor  (4) .
  • This results in the same one-dimensional probability mass functions as for the random variable  XY   ⇒   PU(U)=[0.2, 0.8]  and  PV(V)=[0.34, 0.66].
  • Therefore  H(U)=H(X)=0.722 bit  and  H(V)=H(Y)=0.925 bit.
  • Here, however, the following now applies for the joint entropy:   H(UV)=H(U)+H(V)H(XY).