Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Analytical Signal and its Spectral Function

From LNTwww

Definition in the frequency domain


We consider a real band-pass signal  x(t)  with the corresponding band-pass spectrum  X(f),  which has an even real and an odd imaginary part with respect to the frequency zero point.  It is assumed that the carrier frequency  fT  is much larger than the bandwidth of the band-pass signal  x(t).

Definition:  The  »analytical signal«  x+(t)  belonging to the physical signal  x(t)  is that time function, whose spectrum fulfills the following property:

Analytical signal in the frequency domain
X+(f)=[1+sign(f)]X(f)={2X(f)forf>0,0forf<0.

The  »sign function«  is equal to  +1  for positive f–values and for negative  f-values equal to  1.

  • The  (double sided)  limit value returns  sign(0)=0.
  • The index  "+"  should make clear that  X+(f)  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  X+(f):  The actual band-pass spectrum  X(f)  will

  • be doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Example 1:  The graph

Spectrum  X(f)  and Spectrum  X+(f)  of the analytical signal
  • on the left shows the  (discrete and complex)  spectrum  X(f)  of the  "physical band-pass signal"
x(t)=4Vcos(2πfut)+6Vsin(2πfot),
  • on the right the  (also discrete and complex)  spectrum  X+(f)  of the corresponding  "analytical signal"  x+(t).


General calculation rule in the time domain


Now we will take a closer look at the spectrum  X+(f)  of the analytical signal and divide it with respect to  f=0  into

For a clear explanation of the analytical signal
  • an even  (German:  "gerade"   ⇒   "\rm g")  part  X_{\rm +g}(f),  and
  • an odd   (German:  "ungerade"   ⇒   "\rm u")  part  X_{\rm +u}(f):
X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).

All these spectra are generally complex.

If one considers the  »Assignment Theorem«  of the Fourier transform,  then the following statements are possible on basis of the graph:

  • The even part  X_{\rm +g}(f)  of  X_{+}(f)  leads after the Fourier transform to a real time signal,  and the odd part  X_{\rm +u}(f)  to an imaginary one.


  • It is obvious that  X_{\rm +g}(f)  is equal to the physical Fourier spectrum  X(f)  and thus the real part of  x_{\rm +g}(t)  is equal to the given physical signal  x(t)  with band-pass properties.


  • If we denote the imaginary part with  y(t),  the analytical signal is:
x_+(t)= x(t) + {\rm j} \cdot y(t) .
  • According to the generally valid laws of Fourier transform corresponding to the  »Assignment Theorem«,  the following applies to the spectral function of the imaginary part:
{\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).
  • After transforming this equation into the time domain,  the multiplication becomes the  »convolution«,  and one gets:
y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.

Representation with Hilbert transform


At this point it is necessary to briefly discuss a further spectral transformation,  which is dealt thoroughly in the book  »Linear and Time-invariant Systems« .

\text{Definition:}  For the  »Hilbert transform«  {\rm H}\left\{x(t)\right\}  of a time function  x(t)  applies:

y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.
  • This particular integral cannot be solved in a simple,  conventional way,  but must be evaluated using the  »Cauchy principal value«.
  • Correspondingly valid in the frequency domain:
Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .


Thus,  the result of the last section can be summarized with this definition as follows:

  • You get from the real,  physical band-pass signal  x(t)  the analytic signal  x_+(t)  by adding to  x(t)  an imaginary part according to the Hilbert transform:
x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .
  • The Hilbert transform  \text{H}\{x(t)\}  disappears only in the case of  x(t) = \rm const.   ⇒   DC signal.  With all other signal forms the analytic signal  x_+(t)  is always complex.
  • From the analytical signal  x_+(t)  the real band-pass signal can be easily determined by real part formation:
x(t) = {\rm Re}\left\{x_+(t)\right\} .

\text{Example 2:}  The principle of the Hilbert transformation is illustrated here by the following diagram:

  • According to the left representation  \rm (A),  one gets the analytical signal  x_+(t)  from the physical signal  x(t)  by adding an imaginary part   {\rm j} \cdot y(t).
  • Here,  y(t) = {\rm H}\left\{x(t)\right\}  is a real time function,  which can be calculated easily in the spectral domain by multiplying the spectrum  X(f)  with  - {\rm j} \cdot \sign(f).
Illustration of the Hilbert transform


The right representation  \rm (B)  is equivalent to  \rm (A):

  • With the imaginary function  z(t)  one obtains:
x_+(t) = x(t) + z(t).
  • A comparison of both models shows that it is indeed true:
z(t) = {\rm j} \cdot y(t).


Pointer diagram representation of the harmonic oscillation


The spectral function  X(f)  of a harmonic oscillation  x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)  consists of two Dirac delta functions at frequencies

  • +f_{\rm T}  with complex weight   A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi},
  • -f_{\rm T}  with complex weight   A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}.


Thus, the spectrum of the analytical signal is  (without the Dirac delta function at the frequency  f =-f_{\rm T}):

X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .

The corresponding time function is obtained by applying the  »Shifting Theorem«:

x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.

This equation describes a rotating pointer with constant angular velocity  \omega_{\rm T} = 2\pi f_{\rm T}.

In the following,  we will also refer to the time course of an analytical and frequency-discrete signal  x_+(t)  as  »pointer diagram«.

\text{Example 3:}  For illustrative reasons the coordinate system here is rotated  (real part upwards,  imaginary part to the left),  contrary to the usual representation by  90^\circ.

Pointer diagram of a harmonic oscillation

On the basis of this diagram the following statements are possible:

  • At the start time  t = 0  the pointer of length  A  (amplitude)  lies with angle  -\varphi  in the complex plane.  In the drawn example,  \varphi = 45^\circ.
  • For times  t > 0  the pointer rotates with constant angular velocity  (circular frequency)  \omega_{\rm T}  in mathematically positive direction,  i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  A  and requires exactly the time  T_0,  i.e. the  »period duration«  of the harmonic oscillation  x(t)  for one rotation.
  • The projection of the analytical signal  x_+(t)  onto the real axis,  marked by red dots,  provides the instantaneous values of  x(t).


Pointer diagram of a sum of harmonic oscillations


For the further description we assume the following spectrum for the analytical signal:

Pointer diagram of a sum of three oscillations
X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .
  1. The left graphic shows such a spectrum for the example  I = 3
  2. If one chooses  I  relatively large and the distance between adjacent spectral lines correspondingly small,  then with this equation frequency–continuous spectral functions  X_+(f)  can also be approximated.


In the right graphic the corresponding time function is indicated.  This is in general:

x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.

To note about this graphic:

  • The sketch shows the initial position of the pointers at start time  t = 0  corresponding to the amplitudes  A_i  and the phase positions  \varphi_i.
  • The tip of the resulting pointer compound is marked by the violet cross.  One obtains by vectorial addition of the three individual pointers for the time  t = 0:
x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.
  • For times  t > 0  the three pointers rotate at different angular velocities  \omega_i = 2\pi f_i.  The red pointer rotates faster than the green one,  but slower than the blue one.
  • Since all pointers rotate counterclockwise, the resulting pointer  x_+(t)  will also tend to move in this direction. 
  • At time  t = 1\,µ\text {s}  the tip of the resulting pointer for the given parameter values is
\begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  »Physical Signal and Analytical Signal«  illustrates  x_+(t)  for the sum of three harmonic oscillations.

Exercises for the chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for SSB-AM