Difference between revisions of "Aufgaben:Exercise 1.08Z: BPSK Error Probability"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation }} [[File:|right|]] ===Fragebogen=== <quiz disp…“)
 
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Numerical values of function &nbsp;${\rm Q}(x)$]]
 +
We assume the optimal baseband transmission system for binary signals with
 +
*bipolar amplitude coefficients &nbsp;$a_{\nu} \in \{–1, +1\}$,
  
 +
*rectangular transmitted signal with signal values &nbsp;$\pm s_{0}$&nbsp; and bit duration &nbsp;$T_{\rm B}$,
  
===Fragebogen===
+
*AWGN noise with noise power density &nbsp;$N_{0}$,
 +
 
 +
*receiver filter according to the matched filter principle,
 +
 
 +
*decision with the optimal threshold &nbsp;$E = 0$.
 +
 
 +
 
 +
Unless otherwise specified,&nbsp; you should also assume the following numerical values:
 +
:$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
 +
 
 +
The bit error probability of this&nbsp; "baseband system"&nbsp; has already been given in the chapter &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]]&nbsp; $($Index: &nbsp;$\rm BB)$:
 +
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
 +
 
 +
Here, &nbsp;$\sigma_{d}$&nbsp; denotes the noise rms value at the decision device and &nbsp;${\rm Q}(x)$&nbsp; denotes the complementary Gaussian error function,&nbsp; which is given here in tabular form.&nbsp; This error probability can also be expressed in the form
 +
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
 +
where &nbsp;$E_{\rm B}$&nbsp; denotes&nbsp; "energy per bit."
 +
 
 +
The error probability of a comparable transmission system with&nbsp; "Binary Phase Shift Keying" is&nbsp;  $($Index: &nbsp;$\rm BPSK)$:
 +
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
 +
 
 +
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
 +
 +
*You can check the results with the HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
 +
 
 +
*Since the signal value &nbsp;$s_{0}$&nbsp; is specified here in&nbsp; "volts"&nbsp; and no specification is made for the reference resistance, &nbsp;$E_{\rm B}$&nbsp; has the unit "$\rm V^{2}/Hz$".
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Let &nbsp;$s_{0} = 4 \, \rm V$.&nbsp; What is the error probability &nbsp;$p_{\rm BB}$&nbsp; of the baseband system?
 +
|type="{}"}
 +
$p_{\rm BB} \ = \ $ { 0.00317 3% } $\ \% $
 +
 
 +
{What is the energy per bit for the baseband system with &nbsp;$s_{0} = 4 \, \rm V$?
 +
|type="{}"}
 +
$E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8}\  \rm V^{2}s $
 +
 
 +
{What is the error probability &nbsp;$p_{\rm BB}$&nbsp; at half the transmission amplitude &nbsp; $(s_{0} = 2 \, \rm V)$?
 +
|type="{}"}
 +
$p_{\rm BB} \ = \ $ {  2.27 3% } $\ \% $
 +
 
 +
{Give the error probability of the BPSK depending on the quotient &nbsp;$E_{\rm B}/N_{0}$.&nbsp; Which result is correct?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $p_{\rm BPSK} =  {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
+ Richtig
+
+ $p_{\rm BPSK} =  {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
 
+
-$p_{\rm BPSK} =  {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.
  
{Input-Box Frage
+
{What are the error probabilities for the BPSK and &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; resp.  &nbsp;$E_{\rm B}/N_{0} = 2$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm}  p_{\rm BPSK} \ = \ $ { 0.00317 3% } $\ \% $
 +
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm}  p_{\rm BPSK} \ = \ $ {  2.27 3% } $\ \% $
  
  
Line 23: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The noise rms value is given here by
'''(2)'''&nbsp;
+
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right
'''(3)'''&nbsp;
+
)=  {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
'''(2)'''&nbsp; For the baseband system:
 +
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot
 +
10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
 +
*Of course, the additional given equation gives the exact same error probability:
 +
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
 +
) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm
 +
V^2/Hz} }} \hspace{0.1cm}\right
 +
) =  {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 +
 
 +
*A comparison with question&nbsp; '''(4)'''&nbsp; of&nbsp; [[Aufgaben:Exercise_1.08:_Comparison_of_ASK_and_BPSK|"Exercise 1.8"]]&nbsp; shows that &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; is not&nbsp; (exactly)&nbsp; equal to &nbsp;$10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$.&nbsp;
 +
*In the first case &nbsp;$p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,&nbsp; in the second &nbsp;$p_{\rm BB} = 0.336 \cdot 10^{-4}$.
 +
 
 +
 
 +
'''(3)'''&nbsp; At half the transmission amplitude&nbsp; $s_{0} = 2 \ \rm V$,&nbsp; the energy per bit decreases to a quarter and the following equations apply:
 +
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
 +
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Considering only half the energy&nbsp; $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,&nbsp; we obtain with&nbsp; $\sigma^{2}_{d} = N_{0}/T_{\rm B}$&nbsp; and
 +
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$
 +
the exact same result as for the optimal baseband system &nbsp; &rArr; &nbsp; <u>solution 2</u>.
 +
 
 +
 
 +
'''(5)'''&nbsp; Of course,&nbsp; this also gives the exact same results as for the baseband transmission:
 +
:$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) =  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
 +
:$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) =  {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 36: Line 114:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.5 Lineare digitale Modulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.5 Linear Digital Modulation^]]

Latest revision as of 17:12, 10 May 2022

Numerical values of function  ${\rm Q}(x)$

We assume the optimal baseband transmission system for binary signals with

  • bipolar amplitude coefficients  $a_{\nu} \in \{–1, +1\}$,
  • rectangular transmitted signal with signal values  $\pm s_{0}$  and bit duration  $T_{\rm B}$,
  • AWGN noise with noise power density  $N_{0}$,
  • receiver filter according to the matched filter principle,
  • decision with the optimal threshold  $E = 0$.


Unless otherwise specified,  you should also assume the following numerical values:

$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$

The bit error probability of this  "baseband system"  has already been given in the chapter  "Error Probability for Baseband Transmission"  $($Index:  $\rm BB)$:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

Here,  $\sigma_{d}$  denotes the noise rms value at the decision device and  ${\rm Q}(x)$  denotes the complementary Gaussian error function,  which is given here in tabular form.  This error probability can also be expressed in the form

$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$

where  $E_{\rm B}$  denotes  "energy per bit."

The error probability of a comparable transmission system with  "Binary Phase Shift Keying" is  $($Index:  $\rm BPSK)$:

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$



Notes:

  • Since the signal value  $s_{0}$  is specified here in  "volts"  and no specification is made for the reference resistance,  $E_{\rm B}$  has the unit "$\rm V^{2}/Hz$".



Questions

1

Let  $s_{0} = 4 \, \rm V$.  What is the error probability  $p_{\rm BB}$  of the baseband system?

$p_{\rm BB} \ = \ $

$\ \% $

2

What is the energy per bit for the baseband system with  $s_{0} = 4 \, \rm V$?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-8}\ \rm V^{2}s $

3

What is the error probability  $p_{\rm BB}$  at half the transmission amplitude   $(s_{0} = 2 \, \rm V)$?

$p_{\rm BB} \ = \ $

$\ \% $

4

Give the error probability of the BPSK depending on the quotient  $E_{\rm B}/N_{0}$.  Which result is correct?

$p_{\rm BPSK} = {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.

5

What are the error probabilities for the BPSK and  $E_{\rm B}/N_{0} = 8$  resp.  $E_{\rm B}/N_{0} = 2$?

$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $


Solution

(1)  The noise rms value is given here by

$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right )= {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$


(2)  For the baseband system:

$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
  • Of course, the additional given equation gives the exact same error probability:
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  • A comparison with question  (4)  of  "Exercise 1.8"  shows that  $E_{\rm B}/N_{0} = 8$  is not  (exactly)  equal to  $10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$. 
  • In the first case  $p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,  in the second  $p_{\rm BB} = 0.336 \cdot 10^{-4}$.


(3)  At half the transmission amplitude  $s_{0} = 2 \ \rm V$,  the energy per bit decreases to a quarter and the following equations apply:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$


(4)  Considering only half the energy  $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,  we obtain with  $\sigma^{2}_{d} = N_{0}/T_{\rm B}$  and

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$

the exact same result as for the optimal baseband system   ⇒   solution 2.


(5)  Of course,  this also gives the exact same results as for the baseband transmission:

$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$