Difference between revisions of "Aufgaben:Exercise 1.10: BPSK Baseband Model"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID1683__Dig_A_4_3.png|right|frame|Unbalanced channel frequency response]]
 
[[File:P_ID1683__Dig_A_4_3.png|right|frame|Unbalanced channel frequency response]]
In this exercise, we consider a BPSK system with coherent demodulation, i.e.
+
In this exercise,  we consider a BPSK system with coherent demodulation,  i.e.
 
:$$s(t) \ = \  z(t) \cdot q(t),$$
 
:$$s(t) \ = \  z(t) \cdot q(t),$$
 
:$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$
 
:$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$
Line 12: Line 12:
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
  
*Thus the modulator and demodulator are virtually shortened against each other, and
+
*Thus the modulator and demodulator are virtually shortened against each other,  and
*the bandpass channel  $H_{\rm K}(f)$  is transformed into the lowpass range.
 
  
 +
*the bandpass channel  $H_{\rm K}(f)$  is transformed into the low-pass range.
  
The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the lowpass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]  of the book "Signal Representation", which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by  $f_{\rm T}$  to the left.
 
  
For frequency responses, in contrast to spectral functions, the doubling of the components at positive frequencies must be omitted.
+
The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the low-pass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|"Equivalent Low-Pass Signal and its Spectral Function"]]  of the book "Signal Representation",  which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by the carrier frequency $f_{\rm T}$  to the left.
  
 +
For frequency responses,  in contrast to spectral functions,  the doubling of the components at positive frequencies must be omitted.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
  
''Notes:''
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Baseband_model_for_ASK_and_BPSK|"Baseband model for ASK and BPSK"]].
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|Linear Digital Modulation - Coherent Demodulation]].
+
 
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Baseband_model_for_ASK_and_BPSK|Baseband model for ASK and BPSK]].  
+
*The subscript  "MKD"  stands for   "modulator – channel  – demodulator"  German:  "Modulator – Kanal  – Demodulator").
 
   
 
   
  
Line 36: Line 38:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Which statements are valid for the equivalent lowpass function &nbsp;$H_{\rm K, \, TP}(f)$ ?
+
{Which statements are valid for the equivalent low-pass function &nbsp;$H_{\rm K, \, TP}(f)$ ?
 
|type="[]"}
 
|type="[]"}
- &nbsp;$H_{\rm K, \, TP}(f=0)= 2$ holds.
+
- &nbsp;$H_{\rm K, \, TP}(f=0)= 2$.
+ &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$ holds.
+
+ &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
+ &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 0.75$ holds.
+
+ &nbsp;$H_{\rm K, \, TP}(f = -\Delta f_{\rm K}/4) = 0.75$.
 
+ The corresponding time function &nbsp;$h_{\rm K, \, TP}(t)$&nbsp; is complex.
 
+ The corresponding time function &nbsp;$h_{\rm K, \, TP}(t)$&nbsp; is complex.
  
 
{Which statements are valid for the frequency response &nbsp;$H_{\rm MKD}(f)$ ?
 
{Which statements are valid for the frequency response &nbsp;$H_{\rm MKD}(f)$ ?
 
|type="[]"}
 
|type="[]"}
- &nbsp;$H_{\rm MKD}(f=0)= 2$ holds.
+
- &nbsp;$H_{\rm MKD}(f=0)= 2$.
- &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$ holds.
+
- &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
+ &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 0.75$ holds.
+
+ &nbsp;$H_{\rm MKD}(f = -\Delta f_{\rm K}/4) = 0.75$.
 
- The corresponding time function &nbsp;$h_{\rm MKD}(t)$&nbsp; is complex.
 
- The corresponding time function &nbsp;$h_{\rm MKD}(t)$&nbsp; is complex.
  
{Calculate the time function &nbsp;$h_{\rm MKD}(t)$. Specify the value at &nbsp;$t = 0$.&nbsp;
+
{Calculate the time function &nbsp;$h_{\rm MKD}(t)$.&nbsp; Specify the value at &nbsp;$t = 0$.&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  
 
$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  

Revision as of 14:40, 7 May 2022

Unbalanced channel frequency response

In this exercise,  we consider a BPSK system with coherent demodulation,  i.e.

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

The designations chosen here are based on the  block diagram  in the theory section.

The influence of a channel frequency response  $H_{\rm K}(f)$  can be taken into account in a simple way if it is described together with modulator and demodulator by a common baseband frequency response:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
  • Thus the modulator and demodulator are virtually shortened against each other,  and
  • the bandpass channel  $H_{\rm K}(f)$  is transformed into the low-pass range.


The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the low-pass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  "Equivalent Low-Pass Signal and its Spectral Function"  of the book "Signal Representation",  which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by the carrier frequency $f_{\rm T}$  to the left.

For frequency responses,  in contrast to spectral functions,  the doubling of the components at positive frequencies must be omitted.



Notes:

  • The subscript  "MKD"  stands for  "modulator – channel – demodulator"  German:  "Modulator – Kanal – Demodulator").



Questions

1

Which statements are valid for the equivalent low-pass function  $H_{\rm K, \, TP}(f)$ ?

 $H_{\rm K, \, TP}(f=0)= 2$.
 $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm K, \, TP}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm K, \, TP}(t)$  is complex.

2

Which statements are valid for the frequency response  $H_{\rm MKD}(f)$ ?

 $H_{\rm MKD}(f=0)= 2$.
 $H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm MKD}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm MKD}(t)$  is complex.

3

Calculate the time function  $h_{\rm MKD}(t)$.  Specify the value at  $t = 0$. 

$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $

4

Which of the following statements are true?

$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $1/\Delta f_{\rm K}$.
$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $2/\Delta f_{\rm K}$.


Solution

(1)  Statements 2, 3 and 4 are correct:

  • $H_{\rm K,TP}(f)$ results from $H_{\rm K}(f)$ by cutting off the negative frequency components and shifting $f_{\rm T}$ to the left.
  • For frequency responses – in contrast to spectra – the doubling of the components at positive frequencies is omitted. Therefore:
$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
  • Because of the real and asymmetrical spectral functions $H_{\rm K,\hspace{0.04cm}TP}(f)$ the corresponding time function (Fourier inverse transform) $h_{\rm K,\hspace{0.04cm}TP}(t)$ is complex according to the allocation theorem.


Lowpass functions for $H_{\rm K}(f)$

(2)  Here only the third proposed solution is correct:

  • The spectral function $H_{\rm MKD}(f)$ always has an even real part and no imaginary part. Consequently $h_{\rm MKD}(t)$ is always real.
  • If $H_{\rm K}(f)$ had additionally an imaginary part odd by $f_{\rm T}$, $H_{\rm MKD}(f)$ would have an imaginary part odd by $f = 0$. Thus $h_{\rm MKD}(t)$ would still be a real function.


The diagram illustrates the differences between $H_{\rm K,\hspace{0.04cm}TP}(f)$ and $H_{\rm MKD}(f)$. The parts of $H_{\rm MKD}(f)$ in the range around $\pm 2f_{\rm T}$ need not be considered further.


(3)  $H_{\rm MKD}(f)$ is additively composed of a rectangle and a triangle, each with width $\Delta f_{\rm K}$ and height $0.5$. It follows:

$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$


(4)  The second proposed solution is correct:

  • The first si function does have equidistant zero crossings at the distance $1/\Delta f_{\rm K}$.
  • But the equidistant zero crossings of the whole time function $h_{\rm MKD}$ are determined by the second term:
$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta f_{\rm K}}{4},$$
$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi) = 0.$$