Difference between revisions of "Aufgaben:Exercise 1.10: BPSK Baseband Model"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation
 
}}
 
}}
  
[[File:P_ID1683__Dig_A_4_3.png|right|frame|Unsymmetrischer Kanalfrequenzgang]]
+
[[File:P_ID1683__Dig_A_4_3.png|right|frame|Unbalanced channel frequency response]]
Wir betrachten in dieser Aufgabe ein BPSK–System mit kohärenter Demodulation, das heißt, es gilt
+
In this exercise,  we consider a BPSK system with coherent demodulation,  i.e.
 
:$$s(t) \ = \  z(t) \cdot q(t),$$
 
:$$s(t) \ = \  z(t) \cdot q(t),$$
 
:$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$
 
:$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$
Die hier gewählten Bezeichnungen lehnen sich an das  [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Gemeinsames_Blockschaltbild_f.C3.BCr_ASK_und_BPSK|Blockschaltbild]]  im Theorieteil an.
+
The designations chosen here are based on the  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Common_block_diagram_for_ASK_and_BPSK|"block diagram"]]  in the theory section.
  
Der Einfluss eines Kanalfrequenzgangs  $H_{\rm K}(f)$  lässt sich in einfacher Weise berücksichtigen, wenn man diesen zusammen mit Modulator und Demodulator durch einen gemeinsamen Basisbandfrequenzgang beschreibt:
+
The influence of a channel frequency response  $H_{\rm K}(f)$  can be taken into account in a simple way if it is described together with modulator and demodulator by a common baseband frequency response:
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
  
*Damit werden Modulator und Demodulator quasi gegeneinander gekürzt, und
+
*Thus the modulator and demodulator are virtually shortened against each other,  and
*der Bandpasskanal  $H_{\rm K}(f)$  wird in den Tiefpassbereich transformiert.
 
  
 +
*the band-pass channel  $H_{\rm K}(f)$  is transformed into the low-pass range.
  
Die resultierende Übertragungsfunktion  $H_{\rm MKD}(f)$  sollte man nicht mit der Tiefpass–Übertragungsfunktion  $H_{\rm K, \, TP}(f)$  gemäß der Beschreibung im Kapitel  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]]  des Buches „Signaldarstellung” verwechseln, die sich aus  $H_{\rm K}(f)$  durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um  $f_{\rm T}$  nach links ergibt.
 
  
Bei Frequenzgängen muss im Gegensatz zu Spektralfunktionen auf die Verdoppelung der Anteile bei positiven Frequenzen verzichtet werden.  
+
The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the low-pass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|"Equivalent Low-Pass Signal and its Spectral Function"]]  of the book "Signal Representation",  which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by the carrier frequency $f_{\rm T}$  to the left.
  
 +
For frequency responses,  in contrast to spectral functions,  the doubling of the components at positive frequencies must be omitted.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
  
''Hinweise:''
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Baseband_model_for_ASK_and_BPSK|"Baseband model for ASK and BPSK"]].
*Die Aufgabe gehört zum  Kapitel  [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
+
 
*Bezug genommen wird insbesondere auf die Seite  [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Basisbandmodell_f.C3.BCr_ASK_und_BPSK|Basisbandmodell für ASK und BPSK]].  
+
*The subscript  "MKD"  stands for   "modulator – channel  – demodulator"  German:  "Modulator – Kanal  – Demodulator").
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Aussagen gelten für die äquivalente Tiefpassfunktion &nbsp;$H_{\rm K, \, TP}(f)$ ?
+
{Which statements are valid for the equivalent low-pass function &nbsp;$H_{\rm K, \, TP}(f)$ ?
 
|type="[]"}
 
|type="[]"}
- Es gilt &nbsp;$H_{\rm K, \, TP}(f=0)= 2$.
+
- &nbsp;$H_{\rm K, \, TP}(f=0)= 2$.
+Es gilt &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
+
+ &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
+ Es gilt &nbsp;$H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 0.75$.
+
+ &nbsp;$H_{\rm K, \, TP}(f = -\Delta f_{\rm K}/4) = 0.75$.
+Die dazugehörige Zeitfunktion &nbsp;$h_{\rm K, \, TP}(t)$&nbsp; ist komplex.
+
+ The corresponding time function &nbsp;$h_{\rm K, \, TP}(t)$&nbsp; is complex.
  
{Welche Aussagen gelten für den Frequenzgang  &nbsp;$H_{\rm MKD}(f)$ ?
+
{Which statements are valid for the frequency response &nbsp;$H_{\rm MKD}(f)$ ?
 
|type="[]"}
 
|type="[]"}
- Es gilt &nbsp;$H_{\rm MKD}(f=0)= 2$.
+
- &nbsp;$H_{\rm MKD}(f=0)= 2$.
-Es gilt &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
+
- &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
+ Es gilt &nbsp;$H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 0.75$.
+
+ &nbsp;$H_{\rm MKD}(f = -\Delta f_{\rm K}/4) = 0.75$.
-Die dazugehörige Zeitfunktion &nbsp;$h_{\rm MKD}(t)$&nbsp; ist komplex.
+
- The corresponding time function &nbsp;$h_{\rm MKD}(t)$&nbsp; is complex.
  
{Berechnen Sie die Zeitfunktion &nbsp;$h_{\rm MKD}(t)$. Geben Sie den Wert bei &nbsp;$t = 0$&nbsp; an.
+
{Calculate the time function &nbsp;$h_{\rm MKD}(t)$.&nbsp; Specify the value at &nbsp;$t = 0$.&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  
 
$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  
  
{Welche der folgenden Aussagen treffen zu?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
-$h_{\rm MKD}(t)$&nbsp; hat äquidistante Nulldurchgänge im Abstand &nbsp;$1/\Delta f_{\rm K}$.
+
-$h_{\rm MKD}(t)$&nbsp; has equidistant zero crossings at distance &nbsp;$1/\Delta f_{\rm K}$.
+$h_{\rm MKD}(t)$&nbsp; hat äquidistante Nulldurchgänge im Abstand &nbsp;$2/\Delta f_{\rm K}$.
+
+$h_{\rm MKD}(t)$&nbsp; has equidistant zero crossings at distance &nbsp;$2/\Delta f_{\rm K}$.
  
  
Line 63: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>die Aussagen 2, 3 und 4</u>:  
+
'''(1)'''&nbsp; <u>Statements 2, 3 and 4</u>&nbsp; are correct:  
*$H_{\rm K,TP}(f)$ ergibt sich aus $H_{\rm K}(f)$ durch Abschneiden der negativen Frequenzanteile sowie Verschieben um $f_{\rm T}$ nach links.
+
*$H_{\rm K,TP}(f)$&nbsp; results from&nbsp; $H_{\rm K}(f)$&nbsp; by cutting off the negative frequency components and shifting&nbsp; $f_{\rm T}$&nbsp; to the left.
* Bei Frequenzgängen wird im Gegensatz zu Spektren auf das Verdoppeln der Anteile bei positiven Frequenzen verzichtet. Deshalb:
+
 
 +
* For frequency responses&nbsp; in contrast to spectra &nbsp; the doubling of the components at positive frequencies is omitted.&nbsp; Therefore:
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
*Wegen der reellen und unsymmetrischen Spektralfunktionen $H_{\rm K,\hspace{0.04cm}TP}(f)$ ist die zugehörige Zeitfunktion (Fourierrücktransformierte) $h_{\rm K,\hspace{0.04cm}TP}(t)$ nach dem Zuordnungssatz komplex.
+
*Because of the real and asymmetrical spectral functions&nbsp; $H_{\rm K,\hspace{0.04cm}TP}(f),$&nbsp; the corresponding time function&nbsp; (inverse Fourier transform)&nbsp; $h_{\rm K,\hspace{0.04cm}TP}(t)$&nbsp; is complex according to the&nbsp; "Allocation Theorem".
 +
 
  
 +
[[File:P_ID1684__Dig_A_4_3_a.png|right|frame|Low-pass functions for&nbsp; $H_{\rm K}(f)$]]
  
[[File:P_ID1684__Dig_A_4_3_a.png|center|frame|Tiefpassfunktionen für $H_{\rm K}(f)$]]
+
'''(2)'''&nbsp; Here only the&nbsp; <u>third proposed solution</u>&nbsp; is correct:
 +
*The spectral function&nbsp; $H_{\rm MKD}(f)$&nbsp; always has an even real part and no imaginary part.&nbsp; Consequently&nbsp; $h_{\rm MKD}(t)$&nbsp; is always real.
  
'''(2)'''&nbsp; Hier ist nur der <u>dritte Lösungsvorschlag</u> richtig:
+
*If&nbsp; $H_{\rm K}(f)$&nbsp; had additionally an imaginary part odd by&nbsp;$f= f_{\rm T}$,&nbsp; $H_{\rm MKD}(f)$&nbsp; would have an imaginary part odd by&nbsp;$f = 0$.&nbsp; Thus&nbsp; $h_{\rm MKD}(t)$&nbsp; would still be a real function.
*Die Spektralfunktion $H_{\rm MKD}(f)$ besitzt stets einen geraden Realteil und keinen Imaginärteil. Demzufolge ist $h_{\rm MKD}(t)$ stets reell.
 
*Hätte $H_{\rm K}(f)$ zusätzlich einen um $f_{\rm T}$ ungeraden Imaginärteil, so würde $H_{\rm MKD}(f)$ einen um $f = 0$ ungeraden Imaginärteil aufweisen. Damit wäre $h_{\rm MKD}(t)$ immer noch eine reelle Funktion.
 
  
  
Die Grafik verdeutlicht die Unterschiede zwischen $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$. Die Anteile von $H_{\rm MKD}(f)$ im Bereich um $\pm 2f_{\rm T}$ müssen nicht weiter beachtet werden.
+
The diagram illustrates the differences between&nbsp; $H_{\rm K,\hspace{0.04cm}TP}(f)$&nbsp; and&nbsp; $H_{\rm MKD}(f)$.&nbsp; The parts of&nbsp; $H_{\rm MKD}(f)$&nbsp; in the range around&nbsp; $\pm 2f_{\rm T}$&nbsp; need not be considered further.
  
  
'''(3)'''&nbsp; $H_{\rm MKD}(f)$ setzt sich additiv aus einem Rechteck und einem Dreieck zusammen, jeweils mit Breite $\Delta f_{\rm K}$ und Höhe $0.5$. Daraus folgt:
+
'''(3)'''&nbsp; $H_{\rm MKD}(f)$&nbsp; is additively composed of a rectangle and a triangle,&nbsp; each with width&nbsp; $\Delta f_{\rm K}$&nbsp; and height&nbsp; $0.5$. It follows:
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
+
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} ( \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 ( \frac{\Delta f_{\rm K}}{2} \cdot t)$$
 
:$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm}
 
:$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
 
\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
  
  
'''(4)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag:</u>
+
'''(4)'''&nbsp; The&nbsp; <u>second proposed solution</u>&nbsp; is correct:
*Die erste si–Funktion besitzt zwar äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.  
+
*The first sinc&ndash;function does have equidistant zero crossings at the distance&nbsp; $1/\Delta f_{\rm K}$.  
*Die äquidistanten Nulldurchgänge der gesamten Zeitfunktion $h_{\rm MKD}$ werden aber durch den zweiten Term bestimmt:
+
*But the equidistant zero crossings of the whole time function&nbsp; $h_{\rm MKD}(t)$&nbsp; are determined by the second term:
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+
+
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (1 )+
\frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta
+
\frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (0.5) = \frac{\Delta
 
f_{\rm K}}{4},$$
 
f_{\rm K}}{4},$$
 
:$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}})  = \ \frac{\Delta
 
:$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}})  = \ \frac{\Delta
f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4}
+
f_{\rm K}}{2} \cdot {\rm sinc} (2 )+ \frac{\Delta f_{\rm K}}{4}
\cdot {\rm si}^2 (\pi) = 0.$$
+
\cdot {\rm sinc}^2 (1) = 0.$$
  
  
Line 104: Line 108:
  
  
[[Category:Digital Signal Transmission: Exercises|^1.5 Lineare digitale Modulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.5 Linear Digital Modulation^]]

Latest revision as of 17:15, 10 May 2022

Unbalanced channel frequency response

In this exercise,  we consider a BPSK system with coherent demodulation,  i.e.

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

The designations chosen here are based on the  "block diagram"  in the theory section.

The influence of a channel frequency response  $H_{\rm K}(f)$  can be taken into account in a simple way if it is described together with modulator and demodulator by a common baseband frequency response:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
  • Thus the modulator and demodulator are virtually shortened against each other,  and
  • the band-pass channel  $H_{\rm K}(f)$  is transformed into the low-pass range.


The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the low-pass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  "Equivalent Low-Pass Signal and its Spectral Function"  of the book "Signal Representation",  which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by the carrier frequency $f_{\rm T}$  to the left.

For frequency responses,  in contrast to spectral functions,  the doubling of the components at positive frequencies must be omitted.



Notes:

  • The subscript  "MKD"  stands for  "modulator – channel – demodulator"  German:  "Modulator – Kanal – Demodulator").



Questions

1

Which statements are valid for the equivalent low-pass function  $H_{\rm K, \, TP}(f)$ ?

 $H_{\rm K, \, TP}(f=0)= 2$.
 $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm K, \, TP}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm K, \, TP}(t)$  is complex.

2

Which statements are valid for the frequency response  $H_{\rm MKD}(f)$ ?

 $H_{\rm MKD}(f=0)= 2$.
 $H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm MKD}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm MKD}(t)$  is complex.

3

Calculate the time function  $h_{\rm MKD}(t)$.  Specify the value at  $t = 0$. 

$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $

4

Which of the following statements are true?

$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $1/\Delta f_{\rm K}$.
$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $2/\Delta f_{\rm K}$.


Solution

(1)  Statements 2, 3 and 4  are correct:

  • $H_{\rm K,TP}(f)$  results from  $H_{\rm K}(f)$  by cutting off the negative frequency components and shifting  $f_{\rm T}$  to the left.
  • For frequency responses  – in contrast to spectra –  the doubling of the components at positive frequencies is omitted.  Therefore:
$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
  • Because of the real and asymmetrical spectral functions  $H_{\rm K,\hspace{0.04cm}TP}(f),$  the corresponding time function  (inverse Fourier transform)  $h_{\rm K,\hspace{0.04cm}TP}(t)$  is complex according to the  "Allocation Theorem".


Low-pass functions for  $H_{\rm K}(f)$

(2)  Here only the  third proposed solution  is correct:

  • The spectral function  $H_{\rm MKD}(f)$  always has an even real part and no imaginary part.  Consequently  $h_{\rm MKD}(t)$  is always real.
  • If  $H_{\rm K}(f)$  had additionally an imaginary part odd by $f= f_{\rm T}$,  $H_{\rm MKD}(f)$  would have an imaginary part odd by $f = 0$.  Thus  $h_{\rm MKD}(t)$  would still be a real function.


The diagram illustrates the differences between  $H_{\rm K,\hspace{0.04cm}TP}(f)$  and  $H_{\rm MKD}(f)$.  The parts of  $H_{\rm MKD}(f)$  in the range around  $\pm 2f_{\rm T}$  need not be considered further.


(3)  $H_{\rm MKD}(f)$  is additively composed of a rectangle and a triangle,  each with width  $\Delta f_{\rm K}$  and height  $0.5$. It follows:

$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} ( \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 ( \frac{\Delta f_{\rm K}}{2} \cdot t)$$
$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$


(4)  The  second proposed solution  is correct:

  • The first sinc–function does have equidistant zero crossings at the distance  $1/\Delta f_{\rm K}$.
  • But the equidistant zero crossings of the whole time function  $h_{\rm MKD}(t)$  are determined by the second term:
$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (1 )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (0.5) = \frac{\Delta f_{\rm K}}{4},$$
$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (2 )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (1) = 0.$$