Difference between revisions of "Aufgaben:Exercise 1.3: Calculating with Complex Numbers"

From LNTwww
Line 9: Line 9:
 
:$$z_3 = -{\rm j} .$$
 
:$$z_3 = -{\rm j} .$$
 
   
 
   
In the course of this task, the following complex quantities will be considered:
+
In the course of this task, the following complex values will be considered:
 
:$$z_4 = z_2^2 + z_3^2,$$
 
:$$z_4 = z_2^2 + z_3^2,$$
 
:$$z_5 = 1/z_2,$$
 
:$$z_5 = 1/z_2,$$
Line 28: Line 28:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
Line 35: Line 35:
 
+ <math>2 \cdot z_1 + z_2 =0.</math>
 
+ <math>2 \cdot z_1 + z_2 =0.</math>
 
+ <math>z_1^{\ast} \cdot z_2 +2=0.</math>
 
+ <math>z_1^{\ast} \cdot z_2 +2=0.</math>
- <math>(z_1/z_2) \cdot z_3</math> ist rein reell.
+
- <math>(z_1/z_2) \cdot z_3</math> is purely real.
  
  
{Welchen Wert besitzt die Zufallsgröße&nbsp; <math>z_4 = z_2^2 + z_3^2 = x_4 + {\rm j} \cdot y_4</math>?
+
{What is the value of the random variable&nbsp; <math>z_4 = z_2^2 + z_3^2 = x_4 + {\rm j} \cdot y_4</math>?
 
|type="{}"}
 
|type="{}"}
 
<math> x_4 \ =\  </math> { -1.01--0.99 }
 
<math> x_4 \ =\  </math> { -1.01--0.99 }
Line 44: Line 44:
  
  
{Berechnen Sie die komplexe Größe&nbsp; <math>z_5 = 1/z_2 = x_5 + {\rm j} \cdot y_5</math>.
+
{Calculate the complex value&nbsp; <math>z_5 = 1/z_2 = x_5 + {\rm j} \cdot y_5</math>.
 
|type="{}"}
 
|type="{}"}
 
<math> x_5 \ =\  </math> { -0.36--0.35 }
 
<math> x_5 \ =\  </math> { -0.36--0.35 }
 
<math> y_5  \ =\  </math> { -0.36--0.35 }
 
<math> y_5  \ =\  </math> { -0.36--0.35 }
  
{<math>z_6</math>&nbsp; hat als Quadratwurzel von&nbsp; <math>z_3</math>&nbsp; zwei Lösungen, beide mit dem Betrag&nbsp; <math>|z_6| = 1</math>. <br>Geben Sie die beiden möglichen Phasenwinkel von&nbsp; <math>z_6</math>&nbsp; an.
+
{<math>z_6</math>&nbsp; is the square root of&nbsp; <math>z_3</math>&nbsp;. Therefore <math>z_6</math>&nbsp; has two solutions with the absolute value&nbsp; <math>|z_6| = 1</math>. <br>Give the two possible phase angles of&nbsp; <math>z_6</math>&nbsp;.
 
|type="{}"}
 
|type="{}"}
<math> \phi_6 \ ({\rm zwischen\hspace{0.1cm} 0^{\circ}  \hspace{0.1cm}und \hspace{0.1cm} +\hspace{-0.15cm}180^{\circ} \hspace{0.1cm}Grad}) \hspace{0.2cm} =\ </math>    { 133-137 } $\ \text{Grad}$
+
<math> \phi_6 \ ({\rm between\hspace{0.1cm} 0^{\circ}  \hspace{0.1cm}and \hspace{0.1cm} +\hspace{-0.15cm}180^{\circ} \hspace{0.1cm}deg}) \hspace{0.2cm} =\ </math>    { 133-137 } $\ \text{deg}$
<math> \phi_6 \ ({\rm zwischen\hspace{0.1cm} - \hspace{-0.15cm}180^{\circ}  \hspace{0.1cm}und \hspace{0.1cm} 0^{\circ} \hspace{0.1cm}Grad})  \hspace{0.2cm} =\ </math>  { -47--43  } $\ \text{Grad}$
+
<math> \phi_6 \ ({\rm between\hspace{0.1cm} - \hspace{-0.15cm}180^{\circ}  \hspace{0.1cm}and \hspace{0.1cm} 0^{\circ} \hspace{0.1cm}deg})  \hspace{0.2cm} =\ </math>  { -47--43  } $\ \text{deg}$
  
  
{Berechnen Sie&nbsp;  <math>z_7 = {\rm e}^{z_2} = x_7 + {\rm j} \cdot y_7</math>.
+
{Calculate&nbsp;  <math>z_7 = {\rm e}^{z_2} = x_7 + {\rm j} \cdot y_7</math>.
 
|type="{}"}
 
|type="{}"}
 
<math> x_7  \ =\  </math> { 0.03-0.04 }
 
<math> x_7  \ =\  </math> { 0.03-0.04 }
Line 61: Line 61:
  
  
{Geben Sie die komplexe Größe&nbsp;  <math>z_8 =  {\rm e}^{z_2} +  {\rm e}^{z_2^{\ast}} = x_8 + {\rm j}\cdot y_8</math>&nbsp; an.
+
{Compute the complex value&nbsp;  <math>z_8 =  {\rm e}^{z_2} +  {\rm e}^{z_2^{\ast}} = x_8 + {\rm j}\cdot y_8</math>&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
<math> x_8 \ =\  </math> { 0.07-0.08 }
 
<math> x_8 \ =\  </math> { 0.07-0.08 }
Line 69: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die<u> Lösungsvorschläge 1 und 2</u>:
+
'''(1)'''&nbsp; Correct are the<u> solutions 1 and 2</u>:
 
*Entsprechend den Angaben gilt mit dem&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]:&nbsp;
 
*Entsprechend den Angaben gilt mit dem&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]:&nbsp;
  

Revision as of 15:39, 25 December 2020

Betrachtete Zahlen in der komplexen Ebene

The diagram to the right shows some points in the complex plane, namely


$$z_1 = {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}}, $$
$$z_2 = 2 \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}},$$
$$z_3 = -{\rm j} .$$

In the course of this task, the following complex values will be considered:

$$z_4 = z_2^2 + z_3^2,$$
$$z_5 = 1/z_2,$$
$$z_6 = \sqrt{z_3},$$
$$z_7 = {\rm e}^{\hspace{0.05cm}z_2},$$
$$z_8 = {\rm e}^{\hspace{0.05cm}z_2} + {\rm e}^{\hspace{0.05cm}z_2^{\star}}.$$




Notes:



Questions

1

Which of the following equations are true?

\(2 \cdot z_1 + z_2 =0.\)
\(z_1^{\ast} \cdot z_2 +2=0.\)
\((z_1/z_2) \cdot z_3\) is purely real.

2

What is the value of the random variable  \(z_4 = z_2^2 + z_3^2 = x_4 + {\rm j} \cdot y_4\)?

\( x_4 \ =\ \)

\( y_4 \ =\ \)

3

Calculate the complex value  \(z_5 = 1/z_2 = x_5 + {\rm j} \cdot y_5\).

\( x_5 \ =\ \)

\( y_5 \ =\ \)

4

\(z_6\)  is the square root of  \(z_3\) . Therefore \(z_6\)  has two solutions with the absolute value  \(|z_6| = 1\).
Give the two possible phase angles of  \(z_6\) .

\( \phi_6 \ ({\rm between\hspace{0.1cm} 0^{\circ} \hspace{0.1cm}and \hspace{0.1cm} +\hspace{-0.15cm}180^{\circ} \hspace{0.1cm}deg}) \hspace{0.2cm} =\ \)

$\ \text{deg}$
\( \phi_6 \ ({\rm between\hspace{0.1cm} - \hspace{-0.15cm}180^{\circ} \hspace{0.1cm}and \hspace{0.1cm} 0^{\circ} \hspace{0.1cm}deg}) \hspace{0.2cm} =\ \)

$\ \text{deg}$

5

Calculate  \(z_7 = {\rm e}^{z_2} = x_7 + {\rm j} \cdot y_7\).

\( x_7 \ =\ \)

\( y_7 \ =\ \)

6

Compute the complex value  \(z_8 = {\rm e}^{z_2} + {\rm e}^{z_2^{\ast}} = x_8 + {\rm j}\cdot y_8\) .

\( x_8 \ =\ \)

\( y_8 \ =\ \)


Solution

(1)  Correct are the solutions 1 and 2:

\[2 \cdot z_1 + z_2 = 2 \cdot \cos(45^{ \circ}) - 2 \cdot {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \sin(45^{ \circ})- 2 \cdot \cos(45^{ \circ}) + 2\cdot {\rm j} \cdot\sin(45^{ \circ}) = 0.\]
  • Der zweite Vorschlag ist ebenfalls richtig, da
\[z_1^{\star} \cdot z_2 = 1 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}} \cdot 2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}} = 2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 180^{ \circ}}= -2.\]
  • Dagegen ist der dritte Vorschlag falsch. Die Division von  \(z_1\) und \(z_2\)  liefert: 
\[\frac{z_1}{z_2} = \frac{{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}}}{2 \cdot{\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}}} = 0.5 \cdot{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 180^{ \circ}}= -0.5.\]
  • Die Multiplikation mit  \(z_3 = -{\rm j} \)  führt zum Ergebnis  ${\rm j}/2$, also zu einer rein imaginären Größe.


(2)  Das Quadrat von  \(z_2\)  hat den Betrag  \(|z_2|^{2}\)  und die Phase  \(2 \cdot \phi_2\): 

\[z_2^2 = 2^2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 270^{ \circ}}= 4 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 90^{ \circ}}=-4 \cdot {\rm j}.\]
  • Entsprechend gilt für das Quadrat von  \(z_3\): 
\[z_3^2 = (-{\rm j})^2 = -1.\]
  • Somit ist  \(x_4 =\underline{ –1}\)  und  \(y_4 = \underline{–4}.\)


(3)  Durch Anwendung der Divisionsregel erhält man: 

\[z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}} = 0.5 \cdot \big[ \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ \circ})\big]\]
\[\Rightarrow \ x_5 = - {\sqrt{2}}/{4}\hspace{0.15cm}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \hspace{0.15cm}\underline{= -0.354}.\]


(4)  Die angegeben Beziehung für  \(z_6\)  kann wie folgt umgeformt werden:  \(z_6^2 = {z_3} = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 90^{ \circ}}.\)

  • Man erkennt, dass es zwei Möglichkeiten für  \(z_6\)  gibt, die diese Gleichung erfüllen: 
\[z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} L\ddot{o}sung)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ \circ}}, \]
\[z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} L \ddot{o}sung)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}45^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ \circ}}.\]


(5)  Die komplexe Größe  \(z_2\)  lautet in Realteil/Imaginärteildarstellung: 

\[z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.\]
  • Damit ergibt sich für die komplexe Exponentialfunktion:
\[z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\big].\]
  • Mit  \({\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.4cm} \cos (\sqrt{2}) = 0.156, \hspace{0.4cm} \sin (\sqrt{2}) = 0.988\)  erhält man somit: 
\[z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.\]


(6)  Ausgehend vom Ergebnis der Teilaufgabe  (4)  erhält man für \(z_8\): 

\[z_8 = {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin (\sqrt{2})\big] = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_8 \hspace{0.15cm}\underline{= 0.076}, \hspace{0.4cm}y_8\hspace{0.15cm}\underline{ = 0}.\]