Difference between revisions of "Aufgaben:Exercise 1.3: Rayleigh Fading"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}} Datei:P_ID2106__Mob_A_1_3.png|right|frame|Zeitverlauf von Ra…“)
 
m (Text replacement - "”" to """)
 
(40 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Probability_Density_of_Rayleigh_Fading}}
  
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Zeitverlauf von Rayleigh–Fading]]
+
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
Rayleigh–Fading ist anzuwenden, wenn
+
Rayleigh fading should be used when
* es zwischen Sender und Empfänger keine Direktverbindung gibt, und
+
* there is no direct connection between transmitter and receiver, and
* das Signal den Empfänger auf vielen Wegen erreicht, aber deren Laufzeiten näherungsweise gleich sind.
+
* the signal reaches the receiver through many paths, but their transit times are approximately the same.
  
  
Ein Beispiel eines solchen Rayleigh–Kanals tritt beim Mobilfunk im städtischen Gebiet auf, wenn  schmalbandige Signale verwendet werden mit Reichweiten zwischen  $50$  und  $100$  Meter.
+
An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  $50$  and  $100$  meters.
  
Betrachtet man die Funksignale  $s(t)$  und  $r(t)$  im äquivalenten Tiefpassbereich $($das heißt, um die Frequenz  $f = 0)$, so wird die Signalübertragung durch die Gleichung
+
Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range  $($that is, around the frequency  $f = 0)$,  the signal transmission is described completely by the equation
:$$r(t)=   z(t) \cdot s(t)$$
+
:$$r(t)= z(t) \cdot s(t)$$
  
vollständig beschrieben. Die multiplikative Verfälschung
+
The multiplicative fading coefficient
:$$z(t)=   x(t) + {\rm j} \cdot y(t)$$
+
:$$z(t)= x(t) + {\rm j} \cdot y(t)$$
  
ist stets komplex und weist folgende Eigenschaften auf:
+
is always complex and has the following characteristics:
* Der Realteil  $x(t)$  und der Imaginärteil  $y(t)$  sind Gaußsche mittelwertfreie Zufallsgrößen, beide mit gleicher Varianz  $\sigma^2$. Innerhalb der Komponenten  $x(t)$  und  $y(t)$  kann es statistische Bindungen geben, was aber für die Lösung der vorliegenden Aufgabe nicht relevant ist. Es bestehen keine Bindungen zwischen  $x(t)$  und  $y(t)$; deren Kreuzkorrelationsfunktion ist identisch Null.
+
* The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$.  Within the components  $x(t)$  and  $y(t)$  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  $x(t)$  and  $y(t)$  are uncorrelated.
  
* Der Betrag&nbsp; $a(t) = |z(t)|$&nbsp; besitzt eine Rayleigh&ndash;WDF, woraus sich der Name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo; ableitet:
+
* The magnitude&nbsp; $a(t) = |z(t)|$&nbsp; has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
 
:$$f_a(a) =
 
:$$f_a(a) =
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
 
0  \end{array} \right.\quad
 
0  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} a \ge 0
\\  {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array}
+
\\  {\rm for}\hspace{0.15cm} a < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Das Betragsquadrat&nbsp; $p(t) = a(t)^2 = |z(t)|^2$&nbsp; ist exponentialverteilt entsprechend der Gleichung
+
* The squared magnitude&nbsp; $p(t) = a(t)^2 = |z(t)|^2$&nbsp; is exponentially distributed according to the equation
 
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
 
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
 
0  \end{array} \right.\quad
 
0  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \ge 0
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array}
+
\\  {\rm for}\hspace{0.15cm} p < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Durch Messungen wurde ermittelt, dass die Zeitintervalle mit&nbsp; $a(t) &#8804; 1$&nbsp; (in der Grafik gelb hinterlegt) sich zu&nbsp; $\text{59 ms}$&nbsp; aufaddieren (rot markierte Bereiche). Mit der Gesamtmessdauer von&nbsp; $\text{150 ms}$&nbsp; ergibt sich so die Wahrscheinlichkeit, dass der Betrag des <i>Rayleigh&ndash;Fadings</i> kleiner oder gleich&nbsp; $1$&nbsp; ist, zu
+
Measurements have shown that the time intervals with&nbsp; $a(t) &#8804; 1$&nbsp; $($highlighted in yellow in the graphic$)$ add up to&nbsp; $\text{59 ms}$&nbsp; $($intervals highlighted in red$).$&nbsp; Being the total measurement time&nbsp; $\text{150 ms}$,&nbsp; the probability that the magnitude of the Rayleigh fading is less than or equal to&nbsp; $1$&nbsp; is
:$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\rm ms}}{150\,\,{\rm ms}} = 39.4 \%
+
:$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der unteren Grafik grün hinterlegt ist der Wertebereich zwischen&nbsp; $\text{-3 dB}$&nbsp; und&nbsp; $\text{+3 dB}$&nbsp; hinsichtlich der logarithmierten Rayleigh&ndash;Größe&nbsp; $20 \cdot {\rm lg} \ a(t)$. Hierauf bezieht sich die Teilaufgabe '''(4)'''.
+
In the lower graph, the value range between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$&nbsp; of the logarithmic Rayleigh coefficient&nbsp; $20 \cdot {\rm lg} \ a(t)$&nbsp; is highlighted in green.&nbsp; The subtask '''(4)'''&nbsp; refers to this.
  
  
''Hinweise:''  
+
 
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings|Wahrscheinlichkeitsdichte des Rayleigh&ndash;Fadings]]&nbsp; dieses Buches.  
+
 
* Eine ähnliche Thematik wird mit anderer Herangehensweise im Kapitel&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]]&nbsp; des Buches &bdquo;Stochastische Signaltheorie&rdquo; behandelt.
+
 
* Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet&nbsp; [[Applets:WDF_VTF|WDF, VTF und Momente]]&nbsp; benutzen.
+
 
 +
 
 +
''Notes:''  
 +
* This task belongs to chapter&nbsp; [[Mobile_Communications/Probability_density_of_Rayleigh_fading|Probability density of Rayleigh fading]]&nbsp; of this book.  
 +
* A similar topic is treated with a different approach in chapter&nbsp; [[Theory_of_Stochastic_Signals/Further_distributions|Further distributions]]&nbsp; of the book "Stochastic Signal Theory".
 +
* To check your results, you can use the interactive applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]]&nbsp; of the book "Stochastic Signal Theory".
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Im gesamten Bereich gilt für die Betragsfunktion&nbsp; $a(t) &#8804; 2$. Welcher Maximalwert ergibt sich in diesem Bereich für die logarithmische Größe?
+
{For the entire range,&nbsp; we have&nbsp; $a(t) &#8804; 2$.&nbsp; What is the maximum value of the logarithmic quantity in this range?
 
|type="{}"}
 
|type="{}"}
${\rm Max}\big[20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
+
${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
  
{Welcher Maximalwert ergibt sich für&nbsp; $p(t) = |z(t)|^2$&nbsp; sowohl in linearer als auch in logarithmischer Darstellung?
+
{What is the maximum value of&nbsp; $p(t) = |z(t)|^2$,&nbsp; both in linear and logarithmic representation?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max}\big[p(t)\big] \ = \  $ { 4 3% }  
 
${\rm Max}\big[p(t)\big] \ = \  $ { 4 3% }  
 
${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \  $ { 6 3% } $ \ \rm dB$
 
${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \  $ { 6 3% } $ \ \rm dB$
  
{Es sei&nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = 0.394$. Ermitteln Sie den Rayleigh&ndash;Parameter&nbsp; $\sigma$.
+
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = 0.394$.&nbsp; Determine the Rayleigh parameter&nbsp; $\sigma$.
 
|type="{}"}
 
|type="{}"}
$\sigma \ = \ $ { 1 3% }
+
$\sigma \ = \ $ { 1 3% }
  
{Mit welcher Wahrscheinlichkeit liegt die logarithmierte Rayleigh&ndash;Größe &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; im Bereich zwischen zwischen&nbsp; $\text{-3 dB}$&nbsp; und&nbsp; $\text{+3 dB}$?
+
{What is the probability that the logarithmic Rayleigh coefficient&nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; is between &nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
+
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus ${\rm Max}[a(t)] = 2$ folgt direkt:
+
'''(1)'''&nbsp; From&nbsp; ${\rm Max}[a(t)] = 2$&nbsp; follows directly:
 
:$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 
:$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Der Maximalwert des Betragsquadrats $p(t) = a(t)^2$ beträgt
+
'''(2)'''&nbsp; The maximum value of the square&nbsp; $p(t) = a(t)^2$&nbsp; is
:$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{= 4}
+
:$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{=4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Die logarithmische Darstellung des Betragsquadrats $p(t)$ ist identisch mit der logarithmischen Darstellung des Betrags $a(t)$. Da $p(t)$ eine Leistungsgröße ist, gilt
+
*The logarithmic representation of the squared magnitude&nbsp; $p(t)$&nbsp; is identical to the logarithmic representation of the magnitude&nbsp; $a(t)$.&nbsp;
:$$10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
+
*Since&nbsp; $p(t)$&nbsp; is a power quantity:
 +
:$${\rm Max} \left [  p(t) \right ] = {\rm Max} \left [  a(t)^2 \right ]  \hspace{0.15cm} \underline{= 4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Der Maximalwert ist somit ebenfalls $\underline{\approx 6\,\,{\rm dB}}$.
+
*The maximum value is thus also&nbsp; $\underline{\approx 6\,\,{\rm dB}}$.
  
  
  
'''(3)'''&nbsp; Die Bedingung $a(t) &#8804; 1$ ist gleichbedeutend mit der Forderung $p(t) = a(t)^2 &#8804; 1$.  
+
'''(3)'''&nbsp; The condition&nbsp; $a(t) &#8804; 1$&nbsp; is equivalent to the requirement&nbsp; $p(t) = a(t)^2 &#8804; 1$.  
*Das Betragsquadrat ist bekanntermaßen exponentialverteilt, und für $p &#8805; 0$ gilt demzufolge:
+
*The absolute square is known to be exponentially distributed, and for&nbsp; $p &#8805; 0$&nbsp; we have
:$$f_p(p) =  \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}]
+
:$$f_p(p) =  \frac{1}{2\sigma^2} \cdot {\rm e}^{ -p/(2\sigma^2)}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
[[File:P_ID2112__Mob_A_1_3c.png|right|frame|WDF und Wahrscheinlichkeitsgebiete ]]
+
[[File:EN_Mob_A_1_3_c.png|right|frame|PDF and probability regions ]]
*Daraus folgt:
+
*It follows:
  
:$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p =  
+
:$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm e}^{ -p/(2\sigma^2)} \hspace{0.15cm}{\rm d}p =  
  1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394$$
+
  1 - {\rm e}^{ -1/(2\sigma^2)} = 0.394$$
:$$\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm} {\rm e}^{ -1/(2\sigma^2)} =0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)}  = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
 
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)}  = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
  
Die Grafik zeigt
+
The graph shows
* links die Wahrscheinlichkeit&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
+
* on the left side the probability&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
* rechts die Wahrscheinlichkeit&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
+
* on the right side the probability&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
 
+
<br clear=all>
 
+
'''(4)'''&nbsp; From&nbsp; $10 \cdot {\rm lg} \ p_1 = \ -3 \ \ \rm dB$&nbsp; follows&nbsp; $p_1 = 0.5$.&nbsp; The upper limit of the integration range results from the condition&nbsp; $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$,&nbsp; so&nbsp; $p_2 = 2$.  
 
+
*This gives, according to the above graph:
 
+
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
'''(4)'''&nbsp; Aus $10 \cdot {\rm lg} \ p_1 = \ &ndash;3 \ \rm dB$ folgt $p_1 = 0.5$ und die obere Grenze des Integrationsbereichs ergibt sich aus der Bedingung  $10 \cdot {\rm lg} \ p_2 = +3 \ \rm dB$ zu $p_2 = 2$.  
 
*Damit erhält man gemäß der obigen Grafik:
 
:$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
  
Line 117: Line 120:
  
  
[[Category:Exercises for Mobile Communications|^1.2 PDF of Rayleigh Fading^]]
+
[[Category:Mobile Communications: Exercises|^1.2 PDF of Rayleigh Fading^]]

Latest revision as of 16:41, 28 May 2021

Time evolution of Rayleigh fading

Rayleigh fading should be used when

  • there is no direct connection between transmitter and receiver, and
  • the signal reaches the receiver through many paths, but their transit times are approximately the same.


An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  $50$  and  $100$  meters.

Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range  $($that is, around the frequency  $f = 0)$,  the signal transmission is described completely by the equation

$$r(t)= z(t) \cdot s(t)$$

The multiplicative fading coefficient

$$z(t)= x(t) + {\rm j} \cdot y(t)$$

is always complex and has the following characteristics:

  • The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$.  Within the components  $x(t)$  and  $y(t)$  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  $x(t)$  and  $y(t)$  are uncorrelated.
  • The magnitude  $a(t) = |z(t)|$  has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
$$f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} a \ge 0 \\ {\rm for}\hspace{0.15cm} a < 0 \\ \end{array} \hspace{0.05cm}.$$
  • The squared magnitude  $p(t) = a(t)^2 = |z(t)|^2$  is exponentially distributed according to the equation
$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \ge 0 \\ {\rm for}\hspace{0.15cm} p < 0 \\ \end{array} \hspace{0.05cm}.$$

Measurements have shown that the time intervals with  $a(t) ≤ 1$  $($highlighted in yellow in the graphic$)$ add up to  $\text{59 ms}$  $($intervals highlighted in red$).$  Being the total measurement time  $\text{150 ms}$,  the probability that the magnitude of the Rayleigh fading is less than or equal to  $1$  is

$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \% \hspace{0.05cm}.$$

In the lower graph, the value range between  $\text{-3 dB}$  and  $\text{+3 dB}$  of the logarithmic Rayleigh coefficient  $20 \cdot {\rm lg} \ a(t)$  is highlighted in green.  The subtask (4)  refers to this.




Notes:


Questions

1

For the entire range,  we have  $a(t) ≤ 2$.  What is the maximum value of the logarithmic quantity in this range?

${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $

$\ \rm dB$

2

What is the maximum value of  $p(t) = |z(t)|^2$,  both in linear and logarithmic representation?

${\rm Max}\big[p(t)\big] \ = \ $

${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \ $

$ \ \rm dB$

3

Let   ${\rm Pr}\big[a(t) ≤ 1\big] = 0.394$.  Determine the Rayleigh parameter  $\sigma$.

$\sigma \ = \ $

4

What is the probability that the logarithmic Rayleigh coefficient  $10 \cdot {\rm lg} \ p(t)$  is between   $\text{-3 dB}$  and  $\text{+3 dB}$?

${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $


Solution

(1)  From  ${\rm Max}[a(t)] = 2$  follows directly:

$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}} \hspace{0.05cm}.$$


(2)  The maximum value of the square  $p(t) = a(t)^2$  is

$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{=4} \hspace{0.05cm}.$$
  • The logarithmic representation of the squared magnitude  $p(t)$  is identical to the logarithmic representation of the magnitude  $a(t)$. 
  • Since  $p(t)$  is a power quantity:
$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{= 4} \hspace{0.05cm}.$$
  • The maximum value is thus also  $\underline{\approx 6\,\,{\rm dB}}$.


(3)  The condition  $a(t) ≤ 1$  is equivalent to the requirement  $p(t) = a(t)^2 ≤ 1$.

  • The absolute square is known to be exponentially distributed, and for  $p ≥ 0$  we have
$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm e}^{ -p/(2\sigma^2)} \hspace{0.05cm}.$$
PDF and probability regions
  • It follows:
$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm e}^{ -p/(2\sigma^2)} \hspace{0.15cm}{\rm d}p = 1 - {\rm e}^{ -1/(2\sigma^2)} = 0.394$$
$$\Rightarrow \hspace{0.3cm} {\rm e}^{ -1/(2\sigma^2)} =0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{\sigma = 1} \hspace{0.05cm}.$$

The graph shows

  • on the left side the probability  ${\rm Pr}(p(t) ≤ 1)$,
  • on the right side the probability  ${\rm Pr}(0.5 \le p(t) ≤ 2)$.


(4)  From  $10 \cdot {\rm lg} \ p_1 = \ -3 \ \ \rm dB$  follows  $p_1 = 0.5$.  The upper limit of the integration range results from the condition  $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$,  so  $p_2 = 2$.

  • This gives, according to the above graph:

$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p = \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$