Difference between revisions of "Aufgaben:Exercise 1.3Z: Threshold Optimization"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Fehlerwahrscheinlichkeit bei Basisbandübertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission
 
}}
 
}}
  
  
[[File:P_ID1268__Dig_Z_1_3.png|right|frame|Zur Optimierung des Schwellenwertes]]
+
[[File:EN_Dig_Z_1_3.png|right|frame|Optimizing the threshold  $E$]]
In dieser Aufgabe wird ein bipolares Binärsystem mit AWGN–Rauschen (''Additive White Gaussian Noise'' ) betrachtet, so dass für die Bitfehlerwahrscheinlichkeit gilt:
+
In this exercise,  a bipolar binary system with AWGN noise  ("Additive White Gaussian Noise")  is considered,  so that for the bit error probability:
 
:$$p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2} \cdot \sigma_d}\right) \hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2} \cdot \sigma_d}\right) \hspace{0.05cm}.$$
Hierbei sind folgende Funktionen verwendet:
+
Here,  the following functions are used:
:$$\rm Q (\it x)  =  \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
+
:$${\rm Q} (x)  =  \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
 
\hspace{0.05cm},\hspace{1cm}{\rm erfc} ({\it x})  =  \frac{\rm 2}{\sqrt{\rm
 
\hspace{0.05cm},\hspace{1cm}{\rm erfc} ({\it x})  =  \frac{\rm 2}{\sqrt{\rm
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Die obige Gleichung gilt für den Schwellenwert  $E = 0$  unabhängig von den Symbolwahrscheinlichkeiten  $p_{\rm L}$  und  $p_{\rm H}$.  
+
*The above equation holds for the threshold  $E = 0$,  regardless of the symbol probabilities  $p_{\rm L}$  and  $p_{\rm H}$.  
*Allerdings kann mit einem anderen Schwellenwert  $E$  eine kleinere Fehlerwahrscheinlichkeit erzielt werden, wenn die beiden Auftrittswahrscheinlichkeiten unterschiedlich sind   $(p_{\rm L} ≠ p_{\rm H})$.
+
*However,  a smaller error probability can be obtained with a different threshold  $E$  if the two occurrence probabilities are different   $(p_{\rm L} ≠ p_{\rm H})$.
  
  
Die Streuung des Rauschanteils ist stets  $σ_{d} = 0.5 \ \rm V$. Die beiden Amplituden des Detektionsnutzanteils sind mit  $±1 \ \rm V$  fest vorgegeben.
+
The standard deviation of the noise component is always  $σ_{d} = 0.5 \ \rm V$.  The two amplitudes of the detection signal component are fixed at  $±1 \ \rm V$.   
  
Zu untersuchen sind folgende Symbolwahrscheinlichkeiten:
+
The following symbol probabilities are to be investigated:
 
*$p_{\rm L} = 0.88$   ⇒    $p_{\rm H} = 1- p_{\rm L} =0.12$,
 
*$p_{\rm L} = 0.88$   ⇒    $p_{\rm H} = 1- p_{\rm L} =0.12$,
 
*$p_{\rm L} = 0.31$   ⇒    $p_{\rm H} = 1- p_{\rm L} =0.69$.
 
*$p_{\rm L} = 0.31$   ⇒    $p_{\rm H} = 1- p_{\rm L} =0.69$.
  
  
In der Grafik ist dieser letzte Parametersatz und der Schwellenwert  $E = 0.1 \cdot s_{\rm 0}$  berücksichtigt. Dargestellt ist die Wahrscheinlichkeitsdichtefunktion der Detektionsabtastwerte  $d$.
+
The diagram includes this last set of parameters and the threshold  $E = 0.1 \cdot s_{\rm 0}$.  The probability density function of the detection samples  $d$  is shown.
  
  
Line 30: Line 30:
  
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung| Fehlerwahrscheinlichkeit bei Basisbandübertragung]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
 
   
 
   
*Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das interaktive Applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]  verwenden.
+
*You can use the interactive applet  [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]]  to determine error probabilities.
*Für die Ableitung der Q–Funktion gilt:
+
 
 +
*The following applies to the derivative of the Q-function:
 
:$$\frac{{\rm d\hspace{0.05cm}Q} ({\it x})} {{\rm d}\hspace{0.05cm}x} = \frac{\rm 1}{\sqrt{\rm 2\pi}}
 
:$$\frac{{\rm d\hspace{0.05cm}Q} ({\it x})} {{\rm d}\hspace{0.05cm}x} = \frac{\rm 1}{\sqrt{\rm 2\pi}}
 
\cdot \rm e^{\it -x^{\rm 2}/\rm 2} \hspace{0.05cm}.$$
 
\cdot \rm e^{\it -x^{\rm 2}/\rm 2} \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Zusammenhang besteht zwischen den Funktionen &nbsp;${\rm Q}(x)$&nbsp; und &nbsp;${\rm erfc}(x)$?
+
{What is the relationship between the functions &nbsp;${\rm Q}(x)$&nbsp; and &nbsp;${\rm erfc}(x)$?
|type="[]"}
+
|type="()"}
 
+${\rm erfc}(x) =2 \cdot {\rm Q}(\sqrt{2} \cdot x)$,
 
+${\rm erfc}(x) =2 \cdot {\rm Q}(\sqrt{2} \cdot x)$,
 
-${\rm erfc}(x) =\sqrt{2} \cdot {\rm Q}(x/\sqrt{2})$,
 
-${\rm erfc}(x) =\sqrt{2} \cdot {\rm Q}(x/\sqrt{2})$,
Line 49: Line 50:
  
  
{Welche Bitfehlerwahrscheinlichkeit ergibt sich mit &nbsp;$\underline{p_{\rm L} = 0.88}$&nbsp; und &nbsp;$\underline{E = 0}$?
+
{What is the bit error probability with &nbsp;$\underline{p_{\rm L} = 0.88}$&nbsp; and &nbsp;$\underline{E = 0}$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ =\ $ { 2,27 3% } $\ \%$
 
$p_{\rm B} \ =\ $ { 2,27 3% } $\ \%$
  
{Welche Bitfehlerwahrscheinlichkeit ergibt sich mit &nbsp;$p_{\rm L} = 0.88$&nbsp; und &nbsp;$\underline{E = 0.1 \hspace{0.05cm} \rm V}$?
+
{What is the bit error probability with &nbsp;$p_{\rm L} = 0.88$&nbsp; and &nbsp;$\underline{E = 0.1 \hspace{0.05cm} \rm V}$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ =\ $ { 1,65 3% } $\ \%$
 
$p_{\rm B} \ =\ $ { 1,65 3% } $\ \%$
  
{Bestimmen Sie den optimalen Schwellenwert &nbsp;$E_{\rm opt}$&nbsp; für &nbsp;$p_{\rm L} = 0.88$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.12$.
+
{Determine the optimal threshold &nbsp;$E_{\rm opt}$&nbsp; for &nbsp;$p_{\rm L} = 0.88$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.12$.
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm opt} \ =\ $ { 0.25 3% } $\ \rm V$
 
$E_{\rm opt} \ =\ $ { 0.25 3% } $\ \rm V$
  
{Es gelte &nbsp;$E = E_{\rm opt}$. Wie groß ist die minimale Bitfehlerwahrscheinlichkeit mit &nbsp;$p_{\rm L} = 0.88$?
+
{Let &nbsp;$E = E_{\rm opt}$.&nbsp; What is the minimum bit error probability with &nbsp;$p_{\rm L} = 0.88$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B,\ min} \ =\ $ { 1.35 3% } $\ \%$
 
$p_{\rm B,\ min} \ =\ $ { 1.35 3% } $\ \%$
  
{Bestimmen Sie den optimalen Schwellenwert &nbsp;$E_{\rm opt}$&nbsp; für &nbsp;$\underline{p_{\rm L} = 0.31}$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.69$.
+
{Determine the optimal threshold &nbsp;$E_{\rm opt}$&nbsp; for &nbsp;$\underline{p_{\rm L} = 0.31}$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.69$.
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm opt} \ =\ $ { -0.103--0.097 } $\ \rm V$
 
$E_{\rm opt} \ =\ $ { -0.103--0.097 } $\ \rm V$
  
{Wie groß ist die minimale Bitfehlerwahrscheinlichkeit für diesen Fall &nbsp;$(p_{\rm L} = 0.31)$?
+
{What is the minimum bit error probability for this case &nbsp;$(p_{\rm L} = 0.31)$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B,\ min} \ =\ $ { 2.07 3% } $\ \%$
 
$p_{\rm B,\ min} \ =\ $ { 2.07 3% } $\ \%$
Line 75: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der Q&ndash;Funktion ergibt sich mit der Substitution $t^{2} = u^{2}/2$:
+
'''(1)'''&nbsp; From the Q-function,&nbsp; substitution&nbsp; $t^{2} = u^{2}/2$&nbsp; yields:
 
:$$\rm Q (\it x)= \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
:$$\rm Q (\it x)= \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u =  
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u =  
Line 84: Line 85:
 
{1}/{2} \cdot {\rm erfc} \left( {x}/{\sqrt{2}}
 
{1}/{2} \cdot {\rm erfc} \left( {x}/{\sqrt{2}}
 
\right)\hspace{0.05cm}.$$
 
\right)\hspace{0.05cm}.$$
Daraus folgt die Richtigkeit des <u>ersten Lösungsvorschlags</u>:
+
From this it follows that the&nbsp; <u>first solution</u>&nbsp; is correct:
 
:$${\rm erfc} (x)= 2 \cdot {\rm Q} (\sqrt{2} \cdot x) \hspace{0.05cm}.$$
 
:$${\rm erfc} (x)= 2 \cdot {\rm Q} (\sqrt{2} \cdot x) \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Unabhängig von den Symbolwahrscheinlichkeiten erhält man mit der Entscheiderschwelle $E = 0$:
+
'''(2)'''&nbsp; Independently of the symbol probabilities,&nbsp; with the decision threshold&nbsp; $E = 0$,&nbsp; we obtain:
 
:$$p_{\rm B} =  {\rm Q} \left( {s_0}/{\sigma_d}\right)= {\rm Q}  (2) \hspace{0.1cm}\underline {= 2.27 \, \% }\hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left( {s_0}/{\sigma_d}\right)= {\rm Q}  (2) \hspace{0.1cm}\underline {= 2.27 \, \% }\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Nun lautet die allgemeine Gleichung für die Bitfehlerwahrscheinlichkeit, wobei $d_{\rm N}$ den Rauschanteil von $d(t)$ bezeichnet:
+
'''(3)'''&nbsp; Now the general equation for the bit error probability,&nbsp; where&nbsp; $d_{\rm N}$&nbsp; denotes the noise component of&nbsp; $d(t)$,&nbsp; is:
 
:$$p_{\rm B}  \ = \ p_{\rm L} \cdot {\rm Pr}( d_{\rm N}> E + s_0)+
 
:$$p_{\rm B}  \ = \ p_{\rm L} \cdot {\rm Pr}( d_{\rm N}> E + s_0)+
 
   p_{\rm H} \cdot {\rm Pr}( d_{\rm N}< E - s_0) \ = \ p_{\rm L} \cdot {\rm Q} \left( \frac{s_0 + E}{\sigma_d}\right)+
 
   p_{\rm H} \cdot {\rm Pr}( d_{\rm N}< E - s_0) \ = \ p_{\rm L} \cdot {\rm Q} \left( \frac{s_0 + E}{\sigma_d}\right)+
 
   p_{\rm H} \cdot {\rm Q} \left( \frac{s_0 - E}{\sigma_d}\right)\hspace{0.05cm}.$$
 
   p_{\rm H} \cdot {\rm Q} \left( \frac{s_0 - E}{\sigma_d}\right)\hspace{0.05cm}.$$
*Hierbei ist die WDF-Symmetrie berücksichtigt. Mit $p_{\rm L}  = 0.88$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.12$ und $E = 0.1 \hspace{0.05cm} \rm V $erhält man:
+
*Here,&nbsp; the PDF symmetry is taken into account.&nbsp; With&nbsp; $p_{\rm L}  = 0.88$ &nbsp; &rArr; &nbsp; $p_{\rm H} = 0.12$&nbsp; and&nbsp; $E = 0.1 \hspace{0.05cm} \rm V $&nbsp; one obtains:
 
:$$p_{\rm B} \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} + 0.1\, {\rm V}}{0.5\, {\rm V}}\right)\hspace{-0.05cm}+\hspace{-0.05cm}
 
:$$p_{\rm B} \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} + 0.1\, {\rm V}}{0.5\, {\rm V}}\right)\hspace{-0.05cm}+\hspace{-0.05cm}
 
   0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} - 0.1\, {\rm V}}{0.5\, {\rm V}}\right) \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} {\rm Q}(2.2) \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \cdot {\rm Q}(1.8) \hspace{-0.05cm}= \hspace{-0.05cm}0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 1.39\,\% \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 3.59\,\%\ \hspace{0.1cm}\underline { = 1.65\,\% } \hspace{0.05cm}.$$
 
   0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} - 0.1\, {\rm V}}{0.5\, {\rm V}}\right) \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} {\rm Q}(2.2) \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \cdot {\rm Q}(1.8) \hspace{-0.05cm}= \hspace{-0.05cm}0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 1.39\,\% \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 3.59\,\%\ \hspace{0.1cm}\underline { = 1.65\,\% } \hspace{0.05cm}.$$
*Durch die Schwellenverschiebung nach rechtsum $E = s_{0}/10$ ergibt sich eine Verbesserung von $p_{\rm B} = 2.27 \ \%$ auf $p_{\rm B} = 1.65  \ \%$.
+
*Threshold shifting to the right by&nbsp; $E = s_{0}/10$&nbsp; results in an improvement from&nbsp; $p_{\rm B} = 2.27 \ \%$&nbsp; to&nbsp; $p_{\rm B} = 1.65  \ \%$.
  
  
'''(4)'''&nbsp; Diese Optimierungsaufgabe wird durch Nullsetzen der Ableitung gelöst, wobei der Hinweis auf der Angabenseite zu berücksichtigen ist:
+
'''(4)'''&nbsp; This optimization task is solved by setting the derivative to zero,&nbsp; taking into account the note on the information section:
 
:$$\frac{{\rm d\hspace{0.05cm}} p_{\rm B}(E)} {{\rm d}\hspace{0.05cm}E} = - \frac{\rm p_{\rm L}}{\sqrt{\rm 2\pi}\cdot {\sigma_d}}
 
:$$\frac{{\rm d\hspace{0.05cm}} p_{\rm B}(E)} {{\rm d}\hspace{0.05cm}E} = - \frac{\rm p_{\rm L}}{\sqrt{\rm 2\pi}\cdot {\sigma_d}}
 
\cdot {\rm exp}\left(- \frac{(s_0 + E)^2}{{\rm 2}\cdot
 
\cdot {\rm exp}\left(- \frac{(s_0 + E)^2}{{\rm 2}\cdot
Line 113: Line 114:
 
2}\cdot {\sigma_d}^2}\right)} = {\rm exp} \left( \frac{2 \cdot  E
 
2}\cdot {\sigma_d}^2}\right)} = {\rm exp} \left( \frac{2 \cdot  E
 
\cdot s_0 }{ {\sigma_d}^2}\right)\hspace{0.05cm}.$$
 
\cdot s_0 }{ {\sigma_d}^2}\right)\hspace{0.05cm}.$$
*Damit erhält man für den optimalen Schwellenwert allgemein:
+
*Thus,&nbsp; we obtain for the optimal threshold value in general:
 
:$$E_{\rm opt} = \frac{\sigma_d^2} {2 \cdot s_0} \cdot {\rm ln}\hspace{0.05cm}\frac{p_{\rm L}} {p_{\rm H}} \hspace{0.05cm}.$$
 
:$$E_{\rm opt} = \frac{\sigma_d^2} {2 \cdot s_0} \cdot {\rm ln}\hspace{0.05cm}\frac{p_{\rm L}} {p_{\rm H}} \hspace{0.05cm}.$$
*Mit $&sigma;_{d} = 0.5 \ \rm V$, $s_{\rm 0} = 1 \ \rm V$, $p_{\rm L} = 0.88$ und $p_{\rm H} = 0.12$ ergibt sich folgendes Optimum:
+
*With $&sigma;_{d} = 0.5 \ \rm V$,&nbsp; $s_{\rm 0} = 1 \ \rm V$, $p_{\rm L} = 0.88$&nbsp; and&nbsp; $p_{\rm H} = 0.12$,&nbsp; the following optimum is obtained:
 
:$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.88} {0.12} \hspace{0.1cm}\underline { \approx 0.25\, {\rm V}}\hspace{0.05cm}.$$
 
:$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.88} {0.12} \hspace{0.1cm}\underline { \approx 0.25\, {\rm V}}\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Die minimale Fehlerwahrscheinlichkeit für den optimalen Schwellenwert $E_{\rm opt} = 0.25 \hspace{0.05cm} \rm V$ ist somit:
+
'''(5)'''&nbsp; The minimum error probability for the optimal threshold&nbsp; $E_{\rm opt} = 0.25 \hspace{0.05cm} \rm V$&nbsp; is thus:
 
:$$p_{\rm B, \hspace{0.05cm}min}  = 0.88 \cdot {\rm Q}(2.5) + 0.12 \cdot {\rm Q}(1.5) = 0.88 \cdot 0.62\,\% + 0.12 \cdot 6.68\,\%\  \hspace{0.1cm}\underline {= 1.35\,\% }\hspace{0.05cm}.$$
 
:$$p_{\rm B, \hspace{0.05cm}min}  = 0.88 \cdot {\rm Q}(2.5) + 0.12 \cdot {\rm Q}(1.5) = 0.88 \cdot 0.62\,\% + 0.12 \cdot 6.68\,\%\  \hspace{0.1cm}\underline {= 1.35\,\% }\hspace{0.05cm}.$$
*Gegenüber $E = 0$ ist die Fehlerwahrscheinlichkeit nun um ca. $40  \%$ kleiner.
+
*Compared to&nbsp; $E = 0$,&nbsp; the error probability is now about&nbsp; $40  \%$&nbsp; smaller.
  
  
'''(6)'''&nbsp; Mit dem Ergebnis aus '''(4)''' ergibt sich nun für den optimalen Schwellenwert:  
+
'''(6)'''&nbsp; Using the result from '''(4)''',&nbsp; the optimal threshold value is now:  
 
:$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.31} {0.69}\hspace{0.1cm}\underline { \approx -0.1\, {\rm V}}\hspace{0.05cm}.$$
 
:$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.31} {0.69}\hspace{0.1cm}\underline { \approx -0.1\, {\rm V}}\hspace{0.05cm}.$$
Bitte beachten Sie:
+
Please note:
*Nachdem hier das Symbol '''L''' unwahrscheinlicher ist, muss nun die Schwelle nach links &ndash; also weg vom wahrscheinlicheren Symbol &ndash; verschoben werden.  
+
*Because the symbol&nbsp; '''L'''&nbsp; is less probable here,&nbsp; the threshold must be shifted to the left &ndash; away from the more probable symbol.
*Die Herleitung des Ergebnisses zu '''(4)''' und die Grafik auf der Angabenseite zeigen, dass der optimale Schwellenwert genau an die Stelle zu setzen ist, bei der sich die beiden Gaußfunktionen schneiden.
+
*The derivation of the result for&nbsp; '''(4)'''&nbsp; and the diagram on the information section shows that the optimal threshold value is to be set exactly at the point where the two Gaussian functions intersect.
  
  
'''(7)'''&nbsp; Mit dem Ergebnis aus '''(6)''' gilt schließlich:
+
'''(7)'''&nbsp; Finally,&nbsp; using the result from&nbsp; '''(6)''',&nbsp; the following holds:
 
:$$p_{\rm B, \hspace{0.05cm}min}  = 0.31 \cdot {\rm Q}(1.8) + 0.69 \cdot {\rm Q}(2.2) = 0.31 \cdot 3.59\,\% + 0.69 \cdot 1.39\,\%\ \hspace{0.1cm}\underline { = 2.07\,\% } \hspace{0.05cm}.$$
 
:$$p_{\rm B, \hspace{0.05cm}min}  = 0.31 \cdot {\rm Q}(1.8) + 0.69 \cdot {\rm Q}(2.2) = 0.31 \cdot 3.59\,\% + 0.69 \cdot 1.39\,\%\ \hspace{0.1cm}\underline { = 2.07\,\% } \hspace{0.05cm}.$$
*Aufgrund der weniger gravierenden Unsymmetrie ist die erreichbare Verbesserung mit $9 \%$ geringer als unter Punkt '''(5)''' berechnet
+
*Due to the less severe asymmetry,&nbsp; the achievable improvement of&nbsp; $9 \%$&nbsp; is lower than calculated in subtask&nbsp; '''(5)'''.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 139: Line 140:
  
  
[[Category:Digital Signal Transmission: Exercises|^1.2 BER bei Basisbandsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.2 BER for Baseband Systems^]]

Latest revision as of 15:53, 30 April 2022


Optimizing the threshold  $E$

In this exercise,  a bipolar binary system with AWGN noise  ("Additive White Gaussian Noise")  is considered,  so that for the bit error probability:

$$p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2} \cdot \sigma_d}\right) \hspace{0.05cm}.$$

Here,  the following functions are used:

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u} \hspace{0.05cm},\hspace{1cm}{\rm erfc} ({\it x}) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
  • The above equation holds for the threshold  $E = 0$,  regardless of the symbol probabilities  $p_{\rm L}$  and  $p_{\rm H}$.
  • However,  a smaller error probability can be obtained with a different threshold  $E$  if the two occurrence probabilities are different   $(p_{\rm L} ≠ p_{\rm H})$.


The standard deviation of the noise component is always  $σ_{d} = 0.5 \ \rm V$.  The two amplitudes of the detection signal component are fixed at  $±1 \ \rm V$. 

The following symbol probabilities are to be investigated:

  • $p_{\rm L} = 0.88$   ⇒   $p_{\rm H} = 1- p_{\rm L} =0.12$,
  • $p_{\rm L} = 0.31$   ⇒   $p_{\rm H} = 1- p_{\rm L} =0.69$.


The diagram includes this last set of parameters and the threshold  $E = 0.1 \cdot s_{\rm 0}$.  The probability density function of the detection samples  $d$  is shown.



Notes:

  • The following applies to the derivative of the Q-function:
$$\frac{{\rm d\hspace{0.05cm}Q} ({\it x})} {{\rm d}\hspace{0.05cm}x} = \frac{\rm 1}{\sqrt{\rm 2\pi}} \cdot \rm e^{\it -x^{\rm 2}/\rm 2} \hspace{0.05cm}.$$


Questions

1

What is the relationship between the functions  ${\rm Q}(x)$  and  ${\rm erfc}(x)$?

${\rm erfc}(x) =2 \cdot {\rm Q}(\sqrt{2} \cdot x)$,
${\rm erfc}(x) =\sqrt{2} \cdot {\rm Q}(x/\sqrt{2})$,
${\rm erfc}(x) \approx {\rm Q}(x)$.

2

What is the bit error probability with  $\underline{p_{\rm L} = 0.88}$  and  $\underline{E = 0}$?

$p_{\rm B} \ =\ $

$\ \%$

3

What is the bit error probability with  $p_{\rm L} = 0.88$  and  $\underline{E = 0.1 \hspace{0.05cm} \rm V}$?

$p_{\rm B} \ =\ $

$\ \%$

4

Determine the optimal threshold  $E_{\rm opt}$  for  $p_{\rm L} = 0.88$   ⇒   $p_{\rm H} = 0.12$.

$E_{\rm opt} \ =\ $

$\ \rm V$

5

Let  $E = E_{\rm opt}$.  What is the minimum bit error probability with  $p_{\rm L} = 0.88$?

$p_{\rm B,\ min} \ =\ $

$\ \%$

6

Determine the optimal threshold  $E_{\rm opt}$  for  $\underline{p_{\rm L} = 0.31}$   ⇒   $p_{\rm H} = 0.69$.

$E_{\rm opt} \ =\ $

$\ \rm V$

7

What is the minimum bit error probability for this case  $(p_{\rm L} = 0.31)$?

$p_{\rm B,\ min} \ =\ $

$\ \%$


Solution

(1)  From the Q-function,  substitution  $t^{2} = u^{2}/2$  yields:

$$\rm Q (\it x)= \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u = \frac{\rm 1}{\sqrt{\rm \pi}}\int_{\it x/\sqrt{\rm 2}}^{+\infty}\rm e^{\it -t^{\hspace{0.05cm}\rm 2}}\,{d \it t} = {1}/{2} \cdot {\rm erfc} \left( {x}/{\sqrt{2}} \right)\hspace{0.05cm}.$$

From this it follows that the  first solution  is correct:

$${\rm erfc} (x)= 2 \cdot {\rm Q} (\sqrt{2} \cdot x) \hspace{0.05cm}.$$


(2)  Independently of the symbol probabilities,  with the decision threshold  $E = 0$,  we obtain:

$$p_{\rm B} = {\rm Q} \left( {s_0}/{\sigma_d}\right)= {\rm Q} (2) \hspace{0.1cm}\underline {= 2.27 \, \% }\hspace{0.05cm}.$$


(3)  Now the general equation for the bit error probability,  where  $d_{\rm N}$  denotes the noise component of  $d(t)$,  is:

$$p_{\rm B} \ = \ p_{\rm L} \cdot {\rm Pr}( d_{\rm N}> E + s_0)+ p_{\rm H} \cdot {\rm Pr}( d_{\rm N}< E - s_0) \ = \ p_{\rm L} \cdot {\rm Q} \left( \frac{s_0 + E}{\sigma_d}\right)+ p_{\rm H} \cdot {\rm Q} \left( \frac{s_0 - E}{\sigma_d}\right)\hspace{0.05cm}.$$
  • Here,  the PDF symmetry is taken into account.  With  $p_{\rm L} = 0.88$   ⇒   $p_{\rm H} = 0.12$  and  $E = 0.1 \hspace{0.05cm} \rm V $  one obtains:
$$p_{\rm B} \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} + 0.1\, {\rm V}}{0.5\, {\rm V}}\right)\hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm}{\rm Q} \left( \frac{1\, {\rm V} - 0.1\, {\rm V}}{0.5\, {\rm V}}\right) \hspace{-0.05cm}=\hspace{-0.05cm} 0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} {\rm Q}(2.2) \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \cdot {\rm Q}(1.8) \hspace{-0.05cm}= \hspace{-0.05cm}0.88 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 1.39\,\% \hspace{-0.05cm}+\hspace{-0.05cm} 0.12 \hspace{-0.03cm}\cdot \hspace{-0.03cm} 3.59\,\%\ \hspace{0.1cm}\underline { = 1.65\,\% } \hspace{0.05cm}.$$
  • Threshold shifting to the right by  $E = s_{0}/10$  results in an improvement from  $p_{\rm B} = 2.27 \ \%$  to  $p_{\rm B} = 1.65 \ \%$.


(4)  This optimization task is solved by setting the derivative to zero,  taking into account the note on the information section:

$$\frac{{\rm d\hspace{0.05cm}} p_{\rm B}(E)} {{\rm d}\hspace{0.05cm}E} = - \frac{\rm p_{\rm L}}{\sqrt{\rm 2\pi}\cdot {\sigma_d}} \cdot {\rm exp}\left(- \frac{(s_0 + E)^2}{{\rm 2}\cdot {\sigma_d}^2}\right)+\frac{\rm p_{\rm H}}{\sqrt{\rm 2\pi}\cdot {\sigma_d}} \cdot {\rm exp}\left(- \frac{(s_0 - E)^2}{{\rm 2}\cdot {\sigma_d}^2}\right) = 0$$
$$\Rightarrow \hspace{0.3cm} \frac{p_{\rm L}} {p_{\rm H}} = - \frac{ {\rm exp} \left(-\frac{(s_0 - E)^2}{{\rm 2}\cdot {\sigma_d}^2}\right)}{{\rm exp} \left(-\frac{(s_0 + E)^2}{{\rm 2}\cdot {\sigma_d}^2}\right)} = {\rm exp} \left( \frac{2 \cdot E \cdot s_0 }{ {\sigma_d}^2}\right)\hspace{0.05cm}.$$
  • Thus,  we obtain for the optimal threshold value in general:
$$E_{\rm opt} = \frac{\sigma_d^2} {2 \cdot s_0} \cdot {\rm ln}\hspace{0.05cm}\frac{p_{\rm L}} {p_{\rm H}} \hspace{0.05cm}.$$
  • With $σ_{d} = 0.5 \ \rm V$,  $s_{\rm 0} = 1 \ \rm V$, $p_{\rm L} = 0.88$  and  $p_{\rm H} = 0.12$,  the following optimum is obtained:
$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.88} {0.12} \hspace{0.1cm}\underline { \approx 0.25\, {\rm V}}\hspace{0.05cm}.$$


(5)  The minimum error probability for the optimal threshold  $E_{\rm opt} = 0.25 \hspace{0.05cm} \rm V$  is thus:

$$p_{\rm B, \hspace{0.05cm}min} = 0.88 \cdot {\rm Q}(2.5) + 0.12 \cdot {\rm Q}(1.5) = 0.88 \cdot 0.62\,\% + 0.12 \cdot 6.68\,\%\ \hspace{0.1cm}\underline {= 1.35\,\% }\hspace{0.05cm}.$$
  • Compared to  $E = 0$,  the error probability is now about  $40 \%$  smaller.


(6)  Using the result from (4),  the optimal threshold value is now:

$$E_{\rm opt} = \frac{(0.5\, {\rm V})^2} {2 \cdot 1\, {\rm V}} \cdot {\rm ln}\hspace{0.05cm}\frac{0.31} {0.69}\hspace{0.1cm}\underline { \approx -0.1\, {\rm V}}\hspace{0.05cm}.$$

Please note:

  • Because the symbol  L  is less probable here,  the threshold must be shifted to the left – away from the more probable symbol.
  • The derivation of the result for  (4)  and the diagram on the information section shows that the optimal threshold value is to be set exactly at the point where the two Gaussian functions intersect.


(7)  Finally,  using the result from  (6),  the following holds:

$$p_{\rm B, \hspace{0.05cm}min} = 0.31 \cdot {\rm Q}(1.8) + 0.69 \cdot {\rm Q}(2.2) = 0.31 \cdot 3.59\,\% + 0.69 \cdot 1.39\,\%\ \hspace{0.1cm}\underline { = 2.07\,\% } \hspace{0.05cm}.$$
  • Due to the less severe asymmetry,  the achievable improvement of  $9 \%$  is lower than calculated in subtask  (5).