Difference between revisions of "Aufgaben:Exercise 1.4Z: Representation of Oscillations"

From LNTwww
m
Line 4: Line 4:
  
 
[[File:P_ID969__Mod_Z_1_4.png|right|frame|Two representations of a harmonic oscillation]]
 
[[File:P_ID969__Mod_Z_1_4.png|right|frame|Two representations of a harmonic oscillation]]
Here, we consider a harmonic oscillation  $z(t)$, which is shown in the graph together with the corresponding analytical signal   $z_+(t)$ . These signals can be described mathematically as follows:
+
Here,  we consider a harmonic oscillation  $z(t)$,  which is shown in the graph together with the corresponding analytical signal   $z_+(t)$.  These signals can be described mathematically as follows:
 
:$$z(t)  =  A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})=  A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$  
 
:$$z(t)  =  A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})=  A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$  
:$$ z_+(t)  =  A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$
+
:$$ z_+(t)  =  A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t+ϕ_{\rm T}}.$$
The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless, the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$ , and the duration τ $τ$  is non-negative.
+
The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless,  the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$,  and the duration  $τ$   is non-negative.
  
Subtask   '''(4)'''  refers to the equivalent lowpass signal  $z_{\rm TP}(t)$, which is related to  $z_+(t)$  as follows:
+
Subtask  '''(4)'''  refers to the equivalent low-pass signal  $z_{\rm TP}(t)$,  which is related to  $z_+(t)$  as follows:
 
:$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$
 
:$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$
  
Further note that  $ϕ_{\rm T}$  ppears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.
+
Further note that  $ϕ_{\rm T}$  appears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.
  
  
''Notes on Nomenclature:''
+
Notes on Nomenclature:
*In this tutorial, as is common in other literature, the phase enters the equations with a negative sign when describing harmonic oscillation, Fourier series, and Fourier integrals, whereas in the context of modulation methods, the phase is always given a plus sign.
+
*In this tutorial,  as is common in other literature,  the phase enters the equations with a negative sign when describing harmonic oscillations,  Fourier series,  and Fourier integrals.  In the context of modulation methods,  the phase is always given a plus sign.
*To distinguish these two variants, we use  $\phi_{\rm T}$ and $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek "phi", with the notation  $\phi$  used predominantly in Anglo-American contexts, and $\varphi$ in German.
+
*To distinguish these two variants,  we use  $\phi_{\rm T}$  and  $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek  "phi",  with the notation  $\phi$  used predominantly in Anglo-American contexts,  and  $\varphi$  in German.
*The phase values  $\varphi_{\rm T} = 90^\circ$ and $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
+
*The phase values  $\varphi_{\rm T} = 90^\circ$  and  $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
 
:$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T})  = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$
 
:$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T})  = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$
  
Line 24: Line 24:
  
  
 
+
Further hints:
 
+
*This exercise belongs to the chapter   [[Modulation_Methods/Allgemeines_Modell_der_Modulation|General Model of Modulation]].
 
 
''Further hints:''
 
*This exercise belongs to the chapter  [[Modulation_Methods/Allgemeines_Modell_der_Modulation|General Model of Modulation]].
 
 
*Particular reference is made to the page   [[Modulation_Methods/Allgemeines_Modell_der_Modulation#Beschreibung_des_physikalischen_Signals_mit_Hilfe_des_.C3.A4quivalenten_TP-Signals|Describing the physical signal using the equivalent lowpass signal]].
 
*Particular reference is made to the page   [[Modulation_Methods/Allgemeines_Modell_der_Modulation#Beschreibung_des_physikalischen_Signals_mit_Hilfe_des_.C3.A4quivalenten_TP-Signals|Describing the physical signal using the equivalent lowpass signal]].
*Further information on this topic can be found in the following chapters of the book "Signal Representation":  
+
*You will find further information on these topics in these chapters of the book „Signal Representation”:  
 
::(1)   [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]],  
 
::(1)   [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]],  
::(2)  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]]  and
+
::(2)  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]],   
 
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*In our tutorial $\rm LNTwww$, the plot of the analytical signal $s_+(t)$  n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
 +
::(1)  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physical & Analytic Signal]],
 +
::(2)  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physical Signal & Equivalent Lowpass Signal]].
 
   
 
   
 
*In our tutorial $\rm LNTwww$, the plot of the analytical signal  $s_+(t)$   in the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets   
 
*In our tutorial $\rm LNTwww$, the plot of the analytical signal  $s_+(t)$   in the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets   
Line 51: Line 52:
 
$\omega_{\rm T} \ = \ $ { 3141.5 3% } $\ \text{1/s}$
 
$\omega_{\rm T} \ = \ $ { 3141.5 3% } $\ \text{1/s}$
  
{Determine the phase  $\phi_{\rm T}$  $($zwischen $±180^\circ)$ and the duration  $τ$.
+
{Determine the phase  $\phi_{\rm T}$  $($between  $±180^\circ)$  and the duration  $τ$.
 
|type="{}"}
 
|type="{}"}
 
$\phi_{\rm T}  \ = \ $ { -139--131 } $\ \text{Grad}$  
 
$\phi_{\rm T}  \ = \ $ { -139--131 } $\ \text{Grad}$  
Line 60: Line 61:
 
$t_1 \ = \ $ { 0.25 3% } $\ \text{ms}$
 
$t_1 \ = \ $ { 0.25 3% } $\ \text{ms}$
  
{What is the equivalent low-pass signal  $z_{\rm TP}(t)$?  Enter the value at  $t = 1 \text{ ms}$ ms to check.
+
{What is the equivalent low-pass signal  $z_{\rm TP}(t)$?  Enter the value at  $t = 1 \text{ ms}$  to check.
 
|type="{}"}  
 
|type="{}"}  
 
${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }  
 
${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }  
Line 67: Line 68:
 
{Which of these statements are valid for all harmonic oscillations?
 
{Which of these statements are valid for all harmonic oscillations?
 
|type="[]"}
 
|type="[]"}
+ The spectrum  $Z(f)$  consists of two Dirac functions at  $±f_{\rm T}$.
+
+ The spectrum  $Z(f)$  consists of two Dirac delta functions at  $±f_{\rm T}$.
- The spectrum  $Z_+(f)$  has one Dirac function at  $–f_{\rm T}$.
+
- The spectrum  $Z_+(f)$  has one delta Dirac function at  $–f_{\rm T}$.
+ The spectrum  $Z_{\rm TP}(f)$  contains a Dirac function at  $f = 0$.
+
+ The spectrum  $Z_{\rm TP}(f)$  contains a Dirac delta function at  $f = 0$.
 
+ The analytical signal  $z_+(t)$  is always complex.
 
+ The analytical signal  $z_+(t)$  is always complex.
- The equivalent lowpass signal  $z_{\rm TP}(t)$  is always complex.
+
- The equivalent low-pass signal  $z_{\rm TP}(t)$  is always complex.
  
 
</quiz>
 
</quiz>

Revision as of 18:17, 16 November 2021

Two representations of a harmonic oscillation

Here,  we consider a harmonic oscillation  $z(t)$,  which is shown in the graph together with the corresponding analytical signal  $z_+(t)$.  These signals can be described mathematically as follows:

$$z(t) = A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})= A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$
$$ z_+(t) = A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t+ϕ_{\rm T}}.$$

The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless,  the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$,  and the duration  $τ$   is non-negative.

Subtask  (4)  refers to the equivalent low-pass signal  $z_{\rm TP}(t)$,  which is related to  $z_+(t)$  as follows:

$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$

Further note that  $ϕ_{\rm T}$  appears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.


Notes on Nomenclature:

  • In this tutorial,  as is common in other literature,  the phase enters the equations with a negative sign when describing harmonic oscillations,  Fourier series,  and Fourier integrals.  In the context of modulation methods,  the phase is always given a plus sign.
  • To distinguish these two variants,  we use  $\phi_{\rm T}$  and  $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek  "phi",  with the notation  $\phi$  used predominantly in Anglo-American contexts,  and  $\varphi$  in German.
  • The phase values  $\varphi_{\rm T} = 90^\circ$  and  $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T}) = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$



Further hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal $s_+(t)$  n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical & Analytic Signal,
(2)  Physical Signal & Equivalent Lowpass Signal.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal  $s_+(t)$  in the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical & Analytic Signal,
(2)  Physical Signal & Equivalent Lowpass Signal.


Questions

1

Calculate the signal parameters  $A_{\rm T}$,  $f_{\rm T}$  and  $ω_{\rm T}$.

$A_{\rm T} \ = \ $

$f_{\rm T} \ = \ $

$\ \text{Hz}$
$\omega_{\rm T} \ = \ $

$\ \text{1/s}$

2

Determine the phase  $\phi_{\rm T}$  $($between  $±180^\circ)$  and the duration  $τ$.

$\phi_{\rm T} \ = \ $

$\ \text{Grad}$
$τ \ = \ $

$\ \text{ms}$

3

At what time  $t_1 > 0$  does the analytical signal  $z_+(t)$  first become imaginary?

$t_1 \ = \ $

$\ \text{ms}$

4

What is the equivalent low-pass signal  $z_{\rm TP}(t)$?  Enter the value at  $t = 1 \text{ ms}$  to check.

${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

5

Which of these statements are valid for all harmonic oscillations?

The spectrum  $Z(f)$  consists of two Dirac delta functions at  $±f_{\rm T}$.
The spectrum  $Z_+(f)$  has one delta Dirac function at  $–f_{\rm T}$.
The spectrum  $Z_{\rm TP}(f)$  contains a Dirac delta function at  $f = 0$.
The analytical signal  $z_+(t)$  is always complex.
The equivalent low-pass signal  $z_{\rm TP}(t)$  is always complex.


Solution

(1)  In the graphical representation of the time function   $z(t)$ , one can identify

  • the (normalized) amplitude  $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$  and the period  $T_0=2$  milliseconds.
  • Therefore, the signal frequency is   $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$  Hz and the angular frequency is  $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$  1/s.


(2)  The analytical signal is generally:

$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
  • At the same time the relationship:
$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
  • The complex amplitude  $A_0$  can be read from the upper plot.
$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
  • A comparison of both equations leads to the result:
$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
  • Thereby, the following relationship exists with the duration  $τ$:
$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$


(3)  The analytical signal covers exactly one revolution in the time   $T_0$ .

  • Thus, starting from  $A_0$  after   $t_1 = T_0/8\hspace{0.15cm}\underline{ = 0.25}$  ms, we reach the first moment that the analytical signal is imaginary:
$$z_+(t_1) = - 2 {\rm j}.$$
  • Because of the relation  $z(t) = {\rm Re}[z_+(t)]$  , the first zero crossing of the signal $z(t)$  also occurs at time  $t_1$ .


(4)  Using the result from subtask   (2), we obtain:

$$ z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_0 = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{\rm T}} = {\rm const.}$$
  • Thus, for all times   $t$  and hence also   $t = 1$ ms:
$${\rm Re}[z_{\rm TP}(t)] = - \sqrt{2} \hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm},$$
$$ {\rm Im}[z_{\rm TP}(t)] = - \sqrt{2}\hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm}.$$


(5)  Statements 1, 3 and 4 are correct:

  • The only Dirac function of $Z_+(f)$  is at $f = f_{\rm T}$  and not at  $–f_{\rm T}$.
  • The analytical signal of a harmonic oscillation is always complex.
  • The equivalent lowpass signal of a harmonic oscillation is usually complex. The exception:
$$z(t) = ±A_{\rm T} · \cos(ω_{\rm T} · t) \ \Rightarrow \ z_{\rm TP}(t) = ±A_{\rm T}.$$