Difference between revisions of "Aufgaben:Exercise 1.5: Rectangular-in-Frequency Low-Pass Filter"

From LNTwww
 
(54 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID852__LZI_A_1_5.png|right|Tabelle mit Werten der si– und der Si–Funktion (Aufgabe A1.5)]]
+
[[File:P_ID852__LZI_A_1_5.png|right|frame|Table with values of the  $\rm si$–function and the  $\rm Si$–function]]
Wir betrachten einen idealen, rechteckförmigen Tiefpass manchmal auch Küpfmüller–Tiefpass genannt, der
+
We consider an ideal, rectangular low-pass filter also called a Küpfmüller low-pass filter,
*alle Frequenzen $f <$ 5 kHz unverfälscht durchlässt  ⇒  $H(f) = 1$,  
+
*which passes all frequencies&nbsp; $f < 5 \ \rm kHz$&nbsp; in an undistorted way &nbsp; ⇒  &nbsp; $H(f) = 1$,  
*alle Spektralanteile über 5 kHz vollständig unterdrückt $H(f) = 0$.  
+
*and completely suppresses all spectral components above&nbsp; $5 \ \rm kHz$&nbsp; &nbsp; ⇒ &nbsp; $H(f) = 0$.  
  
  
Exakt bei der Grenzfrequenz $f_{\rm G} =$ 5 kHz ist der Wert der Übertragungsfunktion gleich 1/2.  
+
Exactly at the cut-off frequency&nbsp; $f_{\rm G} = 5 \ \rm kHz$&nbsp; the value of the transfer function is equal to&nbsp; $1/2$.  
  
An den Eingang des Tiefpasses werden verschiedene Signale angelegt:  
+
Various signals are applied to the input of the low-pass filter:  
*ein schmaler Rechteckimpuls geeigneter Höhe, der durch einen Diracimpuls angenähert werden kann:  
+
*a narrow rectangular pulse of suitable height which can be approximated by a "Dirac":  
$$x_1(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot {\rm \delta}(t),$$
+
:$$x_1(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot {\rm \delta}(t),$$
*ein Diracpuls im Zeitabstand $T_{\rm A}$:  
+
*a Dirac pulse, i.e., a sum of Dirac functions evaluated at the respective time interval of&nbsp; $T_{\rm A}$:  
$$x_2(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot \sum_{\nu = -\infty}^{+\infty}{\rm \delta}(t - \nu \cdot T_{\rm A}),$$
+
:$$x_2(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot \sum_{\nu = -\infty}^{+\infty}{\rm \delta}(t - \nu \cdot T_{\rm A}),$$
:wobei das zugehörige Spektrum mit $f_{\rm A} = 1/T_{\rm A}$ lautet:  
+
:where the associated spectrum with&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; is:  
$$X_2(f) = \frac{10^{-3}\hspace{0.1cm}{\rm Vs}}{T_{\rm A}} \cdot\sum_{\mu = -\infty}^{+\infty}{\rm \delta}(f - \mu \cdot f_{\rm A}),$$
+
:$$X_2(f) = \frac{10^{-3}\hspace{0.1cm}{\rm Vs}}{T_{\rm A}} \cdot\sum_{\mu = -\infty}^{+\infty}{\rm \delta}(f - \mu \cdot f_{\rm A}),$$
*eine Sprungfunktion zum Zeitpunkt $t = 0$:  
+
*a step function at time&nbsp; $t = 0$:  
$$x_3(t) = 10\hspace{0.1cm}{\rm V} \cdot \gamma(t) = \left\{ \begin{array}{c} 0  \\  5\hspace{0.1cm}{\rm V} \\ 10\hspace{0.1cm}{\rm V} \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{ t  < 0,}  \\{ t  = 0,}  \\
+
:$$x_3(t) = 10\hspace{0.1cm}{\rm V} \cdot \gamma(t) = \left\{ \begin{array}{c} 0  \\  5\hspace{0.1cm}{\rm V} \\ 10\hspace{0.1cm}{\rm V} \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{ t  < 0,}  \\{ t  = 0,}  \\
 
{ t  > 0,}  \\ \end{array}$$
 
{ t  > 0,}  \\ \end{array}$$
*ein si–förmiger Impuls mit der äquivalenten Dauer $T$:  
+
*an&nbsp; $\rm si$–shaped pulse with equivalent duration&nbsp; $T$:  
$$x_4(t) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot {t}/{T}) .$$
+
:$$x_4(t) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot {t}/{T}) \hspace{0.5cm} {\rm mit} \hspace{0.5cm} {\rm si}(x) = {\rm sin}(x)/x .$$
  
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die Beschreibungen von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen | Kapitel 1.3]]. In der Tabelle sind die Funktionswerte der ''Spaltfunktion'' ${\rm si}(πx)$ und der ''Integralsinusfunktion'' ${\rm Si}(πx)$ aufgelistet:
 
$${\rm Si}(\pi  x) = \int_{ 0 }^{ x } {{\rm si} ( \pi  \xi  )}  \hspace{0.1cm}{\rm d}\xi .$$
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].
 +
*The table lists the function values of the ''sinc function''&nbsp; ${\rm si}(πx)$ and the ''sine integral function''&nbsp; ${\rm Si}(πx)$:
 +
:$${\rm Si}(\pi  x) = \int_{ 0 }^{ x } {{\rm si} ( \pi  \xi  )}  \hspace{0.1cm}{\rm d}\xi \hspace{0.5cm}{\rm mit } \hspace{0.5cm} {\rm si}(x) =\sin(x)/x.$$
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Ausgangssignal $y_1(t)$ ergibt sich als Antwort auf den Diracimpuls $x_1(t)$, insbesondere zu den Zeitpunkten $t =$ 0 und $t =$ 50 μs?  
+
{What is the output signal&nbsp; $y_1(t)$&nbsp; in response to the Dirac function&nbsp; $x_1(t)$, in particular at times&nbsp; $t = 0$&nbsp; and&nbsp; $t = 50 \  \rm &micro; s$?  
 
|type="{}"}
 
|type="{}"}
$y_1(t = 0) =$ { 10 } V
+
$y_1(t = 0) \ = \ $ { 10 3% } &nbsp;$\rm V$
$y_1(t = 50 {\: \rm \mu s}) =$ { 6.37 5%  } V
+
$y_1(t = 50 {\: \rm &micro; s}) \ = \ $ { 6.37 3%  } &nbsp;$\rm V$
  
  
{Wie lautet das Ausgangssignal $y_2(t)$, wenn am Filtereingang der Diracpuls $x_2(t)$ anliegt und $T_{\rm A} =$ 200 μs gilt. Welcher Signalwert tritt bei $t =$ 0 auf?  
+
{What is the output signal&nbsp; $y_2(t)$, if the dirac pulse&nbsp; $x_2(t)$&nbsp; is applied to the filter input and&nbsp; $T_{\rm A} = 200 \  &micro;  \rm s$&nbsp; holds. What signal value occurs at&nbsp; $t = 0$&nbsp;?  
 
|type="{}"}
 
|type="{}"}
$T_{\rm A} = {\rm 200 \: \mu s} : y_2(t = 0) =$ { 10 } V
+
$y_2(t = 0)   \ = \ $ { 10 3% } &nbsp;$\rm V$
  
  
{Welche Werte $y_2(t = 0)$ ergeben sich mit $T_{\rm A} =$ 199 bzw. $T_{\rm A} =$ 201 μs?  
+
{What values&nbsp; $y_2(t = 0)$&nbsp; are obtained with&nbsp; $T_{\rm A} = 199 \  \rm &micro; s$&nbsp; or&nbsp; $T_{\rm A} = 201 \ \rm &micro; s$?  
 
|type="{}"}
 
|type="{}"}
$T_{\rm A} = {\rm 199 \: \mu s} : y_2(t = 0) =$ { 5.025 5% } V
+
$T_{\rm A} = 199 \  {\rm &micro; s} \text{:}\hspace{0.4cm} y_2(t = 0)   \ = \ $ { 5.025 3% } &nbsp;$\rm V$
$T_{\rm A} = {\rm 201 \: \mu s} : y_2(t = 0) =$ { 14.925 5%  } V
+
$T_{\rm A} = 201 \  {\rm &micro; s} \text{:}\hspace{0.4cm} y_2(t = 0)   \ = \ $ { 14.925 3%  } &nbsp;$\rm V$
  
  
{Geben Sie das Ausgangssignal $y_3(t)$ für die Sprungfunktion $x_3(t)$ mit Endwert 10 V an. Welcher Signalwert tritt zum Zeitpunkt $t =$ 0 auf?  
+
{State the output signal&nbsp; $y_3(t)$&nbsp; for the step function&nbsp; $x_3(t)$&nbsp; with final value&nbsp; $10 \ \rm V$&nbsp;. What is the signal value at time&nbsp; $t = 0$&nbsp;?  
 
|type="{}"}
 
|type="{}"}
$y_3(t = 0) =$ { 5 } V
+
$y_3(t = 0) \ = \ $ { 5 3% } &nbsp;$\rm V$
  
  
{Zu welcher Zeit $t_{\rm max}$ ist $y_3(t)$ maximal? Wie groß ist der Maximalwert?  
+
{At what time&nbsp; $t_{\rm max}$&nbsp; does&nbsp; $y_3(t)$&nbsp; attain its maximum value? What is the maximum value??  
 
|type="{}"}
 
|type="{}"}
$t_{\rm max} =$ { 100 } $\rm \mu s$
+
$t_{\rm max} \ = \ $ { 100 3% } &nbsp;$\rm &micro; s$
$y_3(t_{\rm max}) =$ { 10.895 5% } V
+
$y_3(t_{\rm max}) \ = \ $ { 10.895 3% } &nbsp;$\rm V$
  
  
{Wie lautet das Ausgangssignal $y_4(t)$, wenn am Eingang das si–förmige Signal $y_4(t)$ mit $T =$ 200 μs anliegt? Welcher Wert ergibt sich für $t =$ 0?  
+
{What is the output signal&nbsp; $y_4(t)$, if the&nbsp; ${\rm si}$–shaped signal&nbsp; $x_4(t)$&nbsp; with&nbsp; ${\rm si}(πx)$ $T = 200 \ \rm &micro; s$&nbsp; is applied to the input? What value is obtained for&nbsp; $t = 0$?  
 
|type="{}"}
 
|type="{}"}
$T = 200 {\: \rm \mu s} : y_4(t = 0) =$ { 10 } V
+
$y_4(t = 0) \ = \ $ { 10 3% } &nbsp;$\rm V$
  
  
{Welcher Signalwert $y_4(t = 0)$ ergibt sich für $T =$ 50 μs?  
+
{What signal value&nbsp; $y_4(t = 0)$&nbsp; is obtained for&nbsp; $T = 50 \  \rm &micro; s$?  
 
|type="{}"}
 
|type="{}"}
$T = 50 {\: \rm \mu s} : y_4(t = 0) =$ { 5 } V
+
$y_4(t = 0) \ = \ $ { 5 3% } &nbsp;$\rm V$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''a)''' Die Impulsantwort des idealen Tiefpasses lautet mit $Δf =$ 10 kHz:
+
'''(1)'''&nbsp; With &nbsp; $Δf = 10 \ \rm kHz$, the impulse response of the ideal low-pass filter is given by:
$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t ).$$
+
:$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t ).$$
Das Ausgangssignal unterscheidet sich hiervon um den Gewichtungsfaktor $\rm 10^{–3} Vs$:  
+
*The output signal differs from this by the weighting factor&nbsp; $\rm 10^{–3} \ \rm Vs$:  
$$\begin{align*} y_1(t) & =  10^{-3}\hspace{0.1cm}{\rm Vs} \cdot 10^{4}\hspace{0.1cm}{\rm Hz} \cdot {\rm si}(\pi \cdot \Delta f \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\\ & \Rightarrow  \hspace{0.2cm}y_1(t = 0) \hspace{0.15cm}\underline{=10\hspace{0.1cm}{\rm V}},\hspace{0.2cm}y_1(t = 50\hspace{0.1cm}{\rm \mu s}) =10\hspace{0.1cm}{\rm V} \cdot {\rm
+
:$$y_1(t) =  10^{-3}\hspace{0.1cm}{\rm Vs} \cdot 10^{4}\hspace{0.1cm}{\rm Hz} \cdot {\rm si}(\pi \cdot \Delta f \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot \Delta f \cdot t )$$
si} \left( \frac{\pi}{2} \right)  \hspace{0.15cm}\underline{= 6.37\hspace{0.1cm}{\rm V}}.\end{align*}$$
+
:$$ \Rightarrow  \hspace{0.2cm}y_1(t = 0) \hspace{0.15cm}\underline{=10\hspace{0.1cm}{\rm V}},\hspace{0.5cm}y_1(t = 50\hspace{0.1cm}{\rm &micro; s}) =10\hspace{0.1cm}{\rm V} \cdot {\rm
 +
si} \left( {\pi}/{2} \right)  \hspace{0.15cm}\underline{= 6.37\hspace{0.1cm}{\rm V}}.$$
 +
 
 +
 
 +
 
 +
[[File:EN_LZI_A_1_5_b.png | rechts |frame| Dirac pulse and rectangular filter]]
 +
'''(2)'''&nbsp; The spectrum&nbsp; $X_2(f)$&nbsp; contains discrete lines at an interval of&nbsp; $f_{\rm A} = 1/T_{\rm A} = 5 \ \rm kHz$, each with weight&nbsp; $5 \ \rm V$.
 +
 
 +
*The spectrum&nbsp; $Y_2(f)$&nbsp; thus consists of one spectral line at&nbsp; $f = 0$&nbsp;  with weight&nbsp; $5 \ \rm V$&nbsp; and one each at&nbsp; $±5  \ \rm kHz$&nbsp; with weight&nbsp; $2.5 \ \rm V$. Hence, the following is true for the time signal:
 +
:$$ y_2(t)  = 5 \hspace{0.1cm}{\rm V} + 5\hspace{0.1cm}{\rm V} \cdot{\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm cos}^2(\pi \cdot f_{\rm A} \cdot t ).$$
 +
:$$ \Rightarrow \hspace{0.3cm} y_2(t= 0) \hspace{0.15cm} \underline{ = 10\hspace{0.1cm}{\rm V}} .$$
  
  
'''b)''' [[File:P_ID856__LZI_A_1_5_b.png | rechts | Diracpuls und Rechteckfilter (ML zu Aufgabe A1.5b)]] Das Spektrum $X_2(f)$ des Diracpulses beinhaltet diskrete Linien im Abstand $f_{\rm A} = 1/T_{\rm A} =$ 5 kHz, jeweils mit dem Gewicht 5 V. Das Spektrum $Y_2(f)$ besteht somit aus einer Spektrallinie bei $f =$ 0 mit dem Gewicht 5 V und je einer bei ±5 kHz mit Gewicht 2.5 V. Damit gilt für das Zeitsignal:
 
$$\begin{align*} y_2(t)  &= 5 \hspace{0.1cm}{\rm V} + 5\hspace{0.1cm}{\rm V} \cdot{\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) =\\  &= 10\hspace{0.1cm}{\rm V} \cdot {\rm cos}^2(\pi \cdot f_{\rm A} \cdot t ).\end{align*}$$
 
Der Signalwert bei $t =$ 0 beträgt somit $\rm \underline{10 \: V}$.
 
  
 
   
 
   
'''c)''' Mit $T_{\rm A} =$ 199 μs ist $f_{\rm A} >$ 5 kHz. Wegen $H(f_{\rm A}) =$ 0 besteht somit das Spektrum aus nur einer Spektrallinie bei $f =$ 0 mit dem Gewicht 5.025 V und man erhält den konstanten Verlauf $y_2(t) \rm \underline{\: = 5.025 \: V}$. Wird $T_{\rm A}$ weiter verringert, so ergibt sich am Ausgang weiterhin ein Gleichsignal, aber mit größerem Signalwert (proportional zu $1/T_{\rm A}$).  
+
'''(3)'''&nbsp; Due to&nbsp; $T_{\rm A} = 199 \  \rm &micro; s $&nbsp;, &nbsp; $f_{\rm A} > 5 \ \rm kHz$ holds. Because of&nbsp; $H(f_{\rm A}) = 0$&nbsp;  the spectrum consists of only one spectral line at&nbsp; $f = 0$&nbsp; with weight&nbsp; $5.025 \ \rm V$&nbsp;and the following constant curve is obtained
 +
:$$ \Rightarrow \hspace{0.3cm} y_2(t) \rm \underline{\: = 5.025 \ \rm V}.$$
 +
 
 +
*If&nbsp; $T_{\rm A}$&nbsp; is further decreased, the output still yields a direct signal but with larger signal value (proportional to $1/T_{\rm A}$).  
  
Dagegen ist mit $T_{\rm A} =$ 201 μs die Abtastfrequenz etwas kleiner als die Grenzfrequenz des Filters (5 kHz), und die Spektralfunktion des Ausgangssignals lautet:  
+
*In contrast to this, with&nbsp; $T_{\rm A} = 201 \  \rm &micro; s $&nbsp; the sampling frequency is slightly smaller than the cut-off frequency of the filter&nbsp; $(5 \ \rm kHz)$ and the spectral function of the output signal is:  
$$Y_2(f) = 4.975\hspace{0.1cm}{\rm V} \cdot \left[ {\rm \delta}(f ) + {\rm \delta}(f + f_{\rm A}) + {\rm \delta}(f - f_{\rm A})\right].$$
+
:$$Y_2(f) = 4.975\hspace{0.1cm}{\rm V} \cdot \big[ {\rm \delta}(f ) + {\rm \delta}(f + f_{\rm A}) + {\rm \delta}(f - f_{\rm A})\big].$$
Daraus folgt für das Zeitsignal:  
+
*From this it follows for the time signal:  
$$y_2(t )  =  4.975\hspace{0.1cm}{\rm V} +  9.95\hspace{0.1cm}{\rm
+
:$$y_2(t )  =  4.975\hspace{0.1cm}{\rm V} +  9.95\hspace{0.1cm}{\rm
 
V} \cdot {\rm cos}(2 \pi \cdot f_{\rm A} \cdot t )  \hspace{0.2cm} \Rightarrow
 
V} \cdot {\rm cos}(2 \pi \cdot f_{\rm A} \cdot t )  \hspace{0.2cm} \Rightarrow
 
  \hspace{0.2cm}y_2(t = 0) \hspace{0.15cm}\underline{=14.925\hspace{0.1cm}{\rm V}}.$$
 
  \hspace{0.2cm}y_2(t = 0) \hspace{0.15cm}\underline{=14.925\hspace{0.1cm}{\rm V}}.$$
Am prinzipiellen Verlauf ändert sich nichts, solange 200 μs < $T_{\rm A}$ < 400 μs gilt. Allerdings ergeben sich je nach $T_{\rm A}$ unterschiedliche Amplituden. Für $T_{\rm A}$ ≥ 400 μs kommen weitere Spektrallinien hinzu.  
+
*Nothing changes in the fundamental curve as long as&nbsp; $ 200 \ {\rm &micro; s} < T_{\rm A} < 400 \  {\rm &micro;  s} $&nbsp; holds.  
 +
*However, different amplitudes arise as a result depending on&nbsp; $T_{\rm A}$&nbsp;. &nbsp; For&nbsp; $T_{\rm A} ≥ 400 \  {\rm &micro;  s}$ additional spectral lines are added.
 +
 
 +
 
 +
 
 +
[[File:P_ID854__LZI_A_1_5_d.png | rechts |frame| Impulse response and step response]]
 +
'''(4)'''&nbsp; The output signal&nbsp; $y_3(t)$&nbsp; now goes according to the sine integral function:
 +
:$$y_3(t = 0)  = 10\hspace{0.1cm}{\rm V} \cdot \Delta f \cdot  \int_{ - \infty }^{ t } \hspace{-0.3cm} {{\rm si} ( \pi \Delta f  \tau  )} \hspace{0.1cm}{\rm  d}\tau  = 10\hspace{0.1cm}{\rm V} \cdot \big[  {1}/{2} + {1}/{\pi}\cdot {\rm Si} ( \pi  \Delta f  t  )\big].$$
 +
:$$ \Rightarrow \hspace{0.3cm} y_3(t= 0) \hspace{0.15cm} \underline{ = 5\hspace{0.1cm}{\rm V}} .$$
 +
 
 +
 
  
 +
'''(5)'''&nbsp; It is obvious that&nbsp; $y_3(t)$&nbsp; attains its maximum when the&nbsp; ${\rm si}$–function intersects the abscissa for the first time at positive times (see sketch). So, it must hold::
 +
:$$t_{\rm max} = 1/Δf \rm \underline{\: = 100 \: &micro; s}.$$
  
'''d)''' [[File:P_ID854__LZI_A_1_5_d.png | Impuls– und Sprungantwort (ML zu Aufgabe A1.5d) | rechts]] Das Ausgangssignal $y_3(t)$ verläuft nun entsprechend der Integralsinusfunktion:
+
*The signal value is obtained according to the table on the information page and is
$$\begin{align*}y_3(t = 0&= 10\hspace{0.1cm}{\rm V} \cdot \Delta f \cdot \int\limits_{ - \infty }^{ t } {{\rm si} ( \pi \Delta f  \tau  )} \hspace{0.1cm}{\rm d}\tau =\\ &= 10\hspace{0.1cm}{\rm V} \cdot \left[ \frac{1}{2} + \frac{1}{\pi}\cdot {\rm Si} ( \pi  \Delta f  t  )\right].\end{align*}$$
+
:$$y_3(t = t_{\rm max})  = 10\hspace{0.1cm}{\rm V} \cdot \big[ {1}/{2} + {1}/{\pi}\cdot
Zum Zeitpunkt $t =$ 0 gilt $y_3(t) \rm \underline{\: = 5 \: V}$.  
+
  {\rm Si} ( \pi )\big]= 10\hspace{0.1cm}{\rm V} \cdot \big[ 0.5 +
 +
  0.5895 \big] \hspace{0.15cm}\underline{= 10.895 \hspace{0.1cm}{\rm V}} .$$
 +
*At later times&nbsp; $t$&nbsp;, &nbsp; $y_3(t)$&nbsp; slowly adjusts to its final value&nbsp; $10 \ \rm V$.  
  
  
'''e)''' Es ist offensichtlich, dass $y_3(t)$ dann sein Maximum erreicht, wenn die si–Funktion zum ersten Mal bei positiven Zeiten die Abszisse schneidet (siehe Skizze). Also muss $t_{\rm max} = 1/Δf \rm \underline{\: = 100 \: \mu s}$ gelten. Der Signalwert ergibt sich entsprechend der Tabelle auf der Angabenseite zu
+
[[File:P_ID855__LZI_A_1_5_f.png | rechts |frame|Rectangular spectra at the input of the rectangular filter]]
$$y_3(t = t_{\rm max}) = 10\hspace{0.1cm}{\rm V} \cdot \left[  \frac{1}{2} + \frac{1}{\pi}\cdot
+
'''(6)'''&nbsp; The spectral function&nbsp; $X_4(f)$&nbsp; is rectangular like&nbsp; $H(f)$&nbsp; and for&nbsp; $|f| > 2.\ \rm kHz$&nbsp; always zero.  
  {\rm Si} ( \pi  )\right]= 10\hspace{0.1cm}{\rm V} \cdot \left[ 0.5 +
+
*This means that&nbsp; $Y_4(f ) = X_4(f)$&nbsp; holds and so does&nbsp; $y_4(t) = x_4(t)$.  
  0.5895 \right] \hspace{0.15cm}\underline{= 10.895 \hspace{0.1cm}{\rm V}} .$$
+
*Thus, &nbsp;$y_4(t = 0) \rm \underline{\: = 10 \: \rm V}$.  
Zu späteren Zeiten $t$ schwingt $y_3(t)$ langsam auf seinen Endwert 10 V ein.  
 
  
  
'''f)''' [[File:P_ID855__LZI_A_1_5_f.png | Rechteckspektren am Eingang des Rechteckfilters (ML zu Aufgabe A1.5f) | rechts]] Die Spektralfunktion $X_4(f)$ ist wie $H(f)$ rechteckförmig und für $|f| >$ 2.5 kHz stets 0. Das bedeutet, dass in diesem Fall $Y_4(f ) = X_4(f)$ gilt und entsprechend auch $y_4(t) = x_4(t)$. Damit ist $y_4(t = 0) \rm \underline{\: = 10 \: V}$.
 
  
 +
'''(7)'''&nbsp; Due to&nbsp; $T = 50 \ \rm &micro; s$&nbsp;, &nbsp; $X_4(f)$&nbsp; has the width&nbsp; $20 \ \rm kHz$&nbsp; and the height&nbsp; $0.5 · 10 ^{-3} \ \rm V/Hz$.
  
'''g)''' Mit $T =$ 50 μs ist die Breite von $X_4(f)$ gleich 20 kHz und die Höhe 0.5 · 10 $^{-3}$ V/Hz. Die Spektralfunktion $Y_4(f)$ nach Multiplikation mit $H(f)$ hat die gleiche Höhe, die Breite 10 kHz wird jedoch nun durch $H(f)$ bestimmt:  
+
*The spectral function&nbsp; $Y_4(f)$ has the same height &nbsp; after being multiplied by&nbsp; $H(f)$&nbsp;.
$$\begin{align*}y_4(t) & = 0.5 \cdot 10^{-3}\hspace{0.1cm}\frac{ {\rm V} }{ {\rm
+
*The width&nbsp; $10 \ \rm kHz$&nbsp; is now determined exclusively by&nbsp; $H(f)$&nbsp;:  
Hz} } \cdot 10 \hspace{0.1cm}{\rm kHz} \cdot {\rm si}(\pi \Delta f  t ) = 5\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \Delta f  t )\\ & \Rightarrow \hspace{0.2cm}y_4(t = 0) \hspace{0.15cm}\underline{=5\hspace{0.1cm}{\rm V} }.\end{align*}$$
+
:$$y_4(t) = 0.5 \cdot 10^{-3}\hspace{0.1cm}{ {\rm V} }/{ {\rm
 +
Hz} } \cdot 10 \hspace{0.1cm}{\rm kHz} \cdot {\rm si}(\pi \Delta f  t ) = 5\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \Delta f  t )$$
 +
:$$ \Rightarrow \hspace{0.3cm}y_4(t = 0) \hspace{0.15cm}\underline{=5\hspace{0.1cm}{\rm V} }.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 15:35, 7 October 2021

Table with values of the  $\rm si$–function and the  $\rm Si$–function

We consider an ideal, rectangular low-pass filter – also called a Küpfmüller low-pass filter,

  • which passes all frequencies  $f < 5 \ \rm kHz$  in an undistorted way   ⇒   $H(f) = 1$,
  • and completely suppresses all spectral components above  $5 \ \rm kHz$    ⇒   $H(f) = 0$.


Exactly at the cut-off frequency  $f_{\rm G} = 5 \ \rm kHz$  the value of the transfer function is equal to  $1/2$.

Various signals are applied to the input of the low-pass filter:

  • a narrow rectangular pulse of suitable height which can be approximated by a "Dirac":
$$x_1(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot {\rm \delta}(t),$$
  • a Dirac pulse, i.e., a sum of Dirac functions evaluated at the respective time interval of  $T_{\rm A}$:
$$x_2(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot \sum_{\nu = -\infty}^{+\infty}{\rm \delta}(t - \nu \cdot T_{\rm A}),$$
where the associated spectrum with  $f_{\rm A} = 1/T_{\rm A}$  is:
$$X_2(f) = \frac{10^{-3}\hspace{0.1cm}{\rm Vs}}{T_{\rm A}} \cdot\sum_{\mu = -\infty}^{+\infty}{\rm \delta}(f - \mu \cdot f_{\rm A}),$$
  • a step function at time  $t = 0$:
$$x_3(t) = 10\hspace{0.1cm}{\rm V} \cdot \gamma(t) = \left\{ \begin{array}{c} 0 \\ 5\hspace{0.1cm}{\rm V} \\ 10\hspace{0.1cm}{\rm V} \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ t < 0,} \\{ t = 0,} \\ { t > 0,} \\ \end{array}$$
  • an  $\rm si$–shaped pulse with equivalent duration  $T$:
$$x_4(t) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot {t}/{T}) \hspace{0.5cm} {\rm mit} \hspace{0.5cm} {\rm si}(x) = {\rm sin}(x)/x .$$





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • The table lists the function values of the sinc function  ${\rm si}(πx)$ and the sine integral function  ${\rm Si}(πx)$:
$${\rm Si}(\pi x) = \int_{ 0 }^{ x } {{\rm si} ( \pi \xi )} \hspace{0.1cm}{\rm d}\xi \hspace{0.5cm}{\rm mit } \hspace{0.5cm} {\rm si}(x) =\sin(x)/x.$$



Questions

1

What is the output signal  $y_1(t)$  in response to the Dirac function  $x_1(t)$, in particular at times  $t = 0$  and  $t = 50 \ \rm µ s$?

$y_1(t = 0) \ = \ $

 $\rm V$
$y_1(t = 50 {\: \rm µ s}) \ = \ $

 $\rm V$

2

What is the output signal  $y_2(t)$, if the dirac pulse  $x_2(t)$  is applied to the filter input and  $T_{\rm A} = 200 \ µ \rm s$  holds. What signal value occurs at  $t = 0$ ?

$y_2(t = 0) \ = \ $

 $\rm V$

3

What values  $y_2(t = 0)$  are obtained with  $T_{\rm A} = 199 \ \rm µ s$  or  $T_{\rm A} = 201 \ \rm µ s$?

$T_{\rm A} = 199 \ {\rm µ s} \text{:}\hspace{0.4cm} y_2(t = 0) \ = \ $

 $\rm V$
$T_{\rm A} = 201 \ {\rm µ s} \text{:}\hspace{0.4cm} y_2(t = 0) \ = \ $

 $\rm V$

4

State the output signal  $y_3(t)$  for the step function  $x_3(t)$  with final value  $10 \ \rm V$ . What is the signal value at time  $t = 0$ ?

$y_3(t = 0) \ = \ $

 $\rm V$

5

At what time  $t_{\rm max}$  does  $y_3(t)$  attain its maximum value? What is the maximum value??

$t_{\rm max} \ = \ $

 $\rm µ s$
$y_3(t_{\rm max}) \ = \ $

 $\rm V$

6

What is the output signal  $y_4(t)$, if the  ${\rm si}$–shaped signal  $x_4(t)$  with  ${\rm si}(πx)$ $T = 200 \ \rm µ s$  is applied to the input? What value is obtained for  $t = 0$?

$y_4(t = 0) \ = \ $

 $\rm V$

7

What signal value  $y_4(t = 0)$  is obtained for  $T = 50 \ \rm µ s$?

$y_4(t = 0) \ = \ $

 $\rm V$


Solution

(1)  With   $Δf = 10 \ \rm kHz$, the impulse response of the ideal low-pass filter is given by:

$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t ).$$
  • The output signal differs from this by the weighting factor  $\rm 10^{–3} \ \rm Vs$:
$$y_1(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot 10^{4}\hspace{0.1cm}{\rm Hz} \cdot {\rm si}(\pi \cdot \Delta f \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot \Delta f \cdot t )$$
$$ \Rightarrow \hspace{0.2cm}y_1(t = 0) \hspace{0.15cm}\underline{=10\hspace{0.1cm}{\rm V}},\hspace{0.5cm}y_1(t = 50\hspace{0.1cm}{\rm µ s}) =10\hspace{0.1cm}{\rm V} \cdot {\rm si} \left( {\pi}/{2} \right) \hspace{0.15cm}\underline{= 6.37\hspace{0.1cm}{\rm V}}.$$


Dirac pulse and rectangular filter

(2)  The spectrum  $X_2(f)$  contains discrete lines at an interval of  $f_{\rm A} = 1/T_{\rm A} = 5 \ \rm kHz$, each with weight  $5 \ \rm V$.

  • The spectrum  $Y_2(f)$  thus consists of one spectral line at  $f = 0$  with weight  $5 \ \rm V$  and one each at  $±5 \ \rm kHz$  with weight  $2.5 \ \rm V$. Hence, the following is true for the time signal:
$$ y_2(t) = 5 \hspace{0.1cm}{\rm V} + 5\hspace{0.1cm}{\rm V} \cdot{\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm cos}^2(\pi \cdot f_{\rm A} \cdot t ).$$
$$ \Rightarrow \hspace{0.3cm} y_2(t= 0) \hspace{0.15cm} \underline{ = 10\hspace{0.1cm}{\rm V}} .$$



(3)  Due to  $T_{\rm A} = 199 \ \rm µ s $ ,   $f_{\rm A} > 5 \ \rm kHz$ holds. Because of  $H(f_{\rm A}) = 0$  the spectrum consists of only one spectral line at  $f = 0$  with weight  $5.025 \ \rm V$ and the following constant curve is obtained

$$ \Rightarrow \hspace{0.3cm} y_2(t) \rm \underline{\: = 5.025 \ \rm V}.$$
  • If  $T_{\rm A}$  is further decreased, the output still yields a direct signal but with larger signal value (proportional to $1/T_{\rm A}$).
  • In contrast to this, with  $T_{\rm A} = 201 \ \rm µ s $  the sampling frequency is slightly smaller than the cut-off frequency of the filter  $(5 \ \rm kHz)$ and the spectral function of the output signal is:
$$Y_2(f) = 4.975\hspace{0.1cm}{\rm V} \cdot \big[ {\rm \delta}(f ) + {\rm \delta}(f + f_{\rm A}) + {\rm \delta}(f - f_{\rm A})\big].$$
  • From this it follows for the time signal:
$$y_2(t ) = 4.975\hspace{0.1cm}{\rm V} + 9.95\hspace{0.1cm}{\rm V} \cdot {\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) \hspace{0.2cm} \Rightarrow \hspace{0.2cm}y_2(t = 0) \hspace{0.15cm}\underline{=14.925\hspace{0.1cm}{\rm V}}.$$
  • Nothing changes in the fundamental curve as long as  $ 200 \ {\rm µ s} < T_{\rm A} < 400 \ {\rm µ s} $  holds.
  • However, different amplitudes arise as a result depending on  $T_{\rm A}$ .   For  $T_{\rm A} ≥ 400 \ {\rm µ s}$ additional spectral lines are added.


Impulse response and step response

(4)  The output signal  $y_3(t)$  now goes according to the sine integral function:

$$y_3(t = 0) = 10\hspace{0.1cm}{\rm V} \cdot \Delta f \cdot \int_{ - \infty }^{ t } \hspace{-0.3cm} {{\rm si} ( \pi \Delta f \tau )} \hspace{0.1cm}{\rm d}\tau = 10\hspace{0.1cm}{\rm V} \cdot \big[ {1}/{2} + {1}/{\pi}\cdot {\rm Si} ( \pi \Delta f t )\big].$$
$$ \Rightarrow \hspace{0.3cm} y_3(t= 0) \hspace{0.15cm} \underline{ = 5\hspace{0.1cm}{\rm V}} .$$


(5)  It is obvious that  $y_3(t)$  attains its maximum when the  ${\rm si}$–function intersects the abscissa for the first time at positive times (see sketch). So, it must hold::

$$t_{\rm max} = 1/Δf \rm \underline{\: = 100 \: µ s}.$$
  • The signal value is obtained according to the table on the information page and is
$$y_3(t = t_{\rm max}) = 10\hspace{0.1cm}{\rm V} \cdot \big[ {1}/{2} + {1}/{\pi}\cdot {\rm Si} ( \pi )\big]= 10\hspace{0.1cm}{\rm V} \cdot \big[ 0.5 + 0.5895 \big] \hspace{0.15cm}\underline{= 10.895 \hspace{0.1cm}{\rm V}} .$$
  • At later times  $t$ ,   $y_3(t)$  slowly adjusts to its final value  $10 \ \rm V$.


Rectangular spectra at the input of the rectangular filter

(6)  The spectral function  $X_4(f)$  is rectangular like  $H(f)$  and for  $|f| > 2.5 \ \rm kHz$  always zero.

  • This means that  $Y_4(f ) = X_4(f)$  holds and so does  $y_4(t) = x_4(t)$.
  • Thus,  $y_4(t = 0) \rm \underline{\: = 10 \: \rm V}$.


(7)  Due to  $T = 50 \ \rm µ s$ ,   $X_4(f)$  has the width  $20 \ \rm kHz$  and the height  $0.5 · 10 ^{-3} \ \rm V/Hz$.

  • The spectral function  $Y_4(f)$ has the same height   after being multiplied by  $H(f)$ .
  • The width  $10 \ \rm kHz$  is now determined exclusively by  $H(f)$ :
$$y_4(t) = 0.5 \cdot 10^{-3}\hspace{0.1cm}{ {\rm V} }/{ {\rm Hz} } \cdot 10 \hspace{0.1cm}{\rm kHz} \cdot {\rm si}(\pi \Delta f t ) = 5\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \Delta f t )$$
$$ \Rightarrow \hspace{0.3cm}y_4(t = 0) \hspace{0.15cm}\underline{=5\hspace{0.1cm}{\rm V} }.$$