Difference between revisions of "Aufgaben:Exercise 1.6: Rectangular-in-Time Low-Pass Filter"

From LNTwww
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID858__LZI_A_1_6.png|right|frame|Rechteckförmige Impulsantwort, akausal und kausal]]
+
[[File:P_ID858__LZI_A_1_6.png|right|frame|Rectangular impulse response, non-causal and causal]]
Wir betrachten im Folgenden die in der Grafik gezeigte Konstellation:  
+
We consider below the constellation shown in the graph:  
*Der Frequenzgang $H(f) = H_1(f) · H_2(f)$ im unteren Zweig ist durch die Impulsantworten seiner beiden Teilkomponenten festgelegt.  
+
*The frequency response  $H(f) = H_1(f) · H_2(f)$  in the lower branch is determined by the impulse responses of its two subcomponents.  
*Hierbei ist $h_1(t)$ im Bereich von $-1\ \rm ms$ bis $+1\ \rm ms$ konstant gleich $k$ und außerhalb Null.
+
*Here,  $h_1(t)$  is constantly equal to  $k$  in the reange from  $-1\ \rm ms$  to  $+1\ \rm ms$  and zero outside.
*An den Bereichsgrenzen gilt jeweils der halbe Wert.  
+
*At the range limits, half the value is valid in each case.  
*Die im Bild eingezeichnete Zeitvariable ist somit $Δt = 2 \ \rm ms$.
+
*The time variable drawn in the figure is thus  $Δt = 2 \ \rm ms$.
  
  
Die Impulsantwort der zweiten Systemfunktion $H_2(f)$ lautet:
+
The impulse response of the second system function  $H_2(f)$  is:
 
:$$h_2(t) =  \delta(t - \tau).$$
 
:$$h_2(t) =  \delta(t - \tau).$$
Der Frequenzgang zwischen den Signalen $x(t)$ und $z(t)$ hat Hochpass–Charakter und lautet allgemein:
+
The frequency response between the signals  $x(t)$  and  $z(t)$  is of high-pass character and generally:
 
:$$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi}f \tau}.$$
 
:$$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi}f \tau}.$$
*Für die Teilaufgaben '''(1)''' bis '''(4)''' gelte $τ = 0$  ⇒  $H(f) = H_1(f)$.  
+
*For the subtasks  '''(1)'''  to  '''(4)'''  the following holds:   $τ = 0$   ⇒   $H(f) = H_1(f)$.  
*Mit $τ = 0$ kann hierfür aber auch geschrieben werden $(Δt = 2 \ \rm ms)$:
+
*However, using  $τ = 0$  this can also be formulated as follows  $(Δt = 2 \ \rm ms)$:
 
:$$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$
 
:$$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$
Ohne Auswirkung auf die Lösung der Aufgabe ist anzumerken, dass diese Gleichung für $τ ≠ 0$  nicht anwendbar ist, wegen:
+
*With no effect on the solution of the problem, note that this equation is not applicable for  $τ ≠ 0$  because of:
 
:$$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$
 
:$$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$
  
Line 25: Line 25:
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].   
+
 
*Bezug genommen wird insbesondere auf die Seite   [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Spalttiefpass|Spalt–Tiefpass]].
+
 
 +
''Please note:''
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].   
 +
*In particular, reference is made to the page   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Slit_low-pass_filter_–_Rectangular-in-time|Slit low-pass filter]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Höhe $k$ der Impulsantwort $h_1(t)$ unter der Nebenbedingung $H_1(f = 0) = 1$.
+
{Calculate the height&nbsp; $k$&nbsp; of the impulse response&nbsp; $h_1(t)$&nbsp; on the side condition of&nbsp; $H_1(f = 0) = 1$.
 
|type="{}"}
 
|type="{}"}
 
$k \ =\ $ { 500 3% } $\ \rm 1/s$
 
$k \ =\ $ { 500 3% } $\ \rm 1/s$
  
  
{Das Eingangssignal $x(t)$ sei ein um $t = 0$ symmetrisches Rechteck der Dauer &nbsp;$T = 2 \ \rm ms$&nbsp; und der Höhe &nbsp;$1 \, \rm V$. Es gelte $τ = 0$ . <br>Welche Aussagen sind zutreffend?
+
{Let the input signal&nbsp; $x(t)$&nbsp; be a rectangle symmetric about&nbsp; $t = 0$&nbsp; of duration&nbsp;$T = 2 \ \rm ms$&nbsp; and height&nbsp;$1 \, \rm V$. Let&nbsp; $τ = 0$ hold. <br>Which statements are true?
 
|type="[]"}
 
|type="[]"}
- $y(t)$ ist rechteckförmig.
+
- $y(t)$&nbsp; is rectangular.
+ $y(t)$ ist dreieckförmig.
+
+ $y(t)$&nbsp; is triangular.
- $y(t)$ ist trapezförmig.
+
- $y(t)$&nbsp; is trapezoidal.
+ Der Maximalwert von $y(t)$ beträgt $ 1\hspace{0.05cm} \rm V$.
+
+ The maximum value of&nbsp; $y(t)$&nbsp; is&nbsp; $ 1\hspace{0.05cm} \rm V$.
  
  
{Welche Aussagen treffen zu, wenn $x(t)$ die Rechteckbreite &nbsp;$T = 2 \ \rm ms$&nbsp; besitzt?
+
{Which statements are true, if&nbsp; $x(t)$&nbsp; has a rectangle width of &nbsp;$T = 1 \ \rm ms$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- $y(t)$ ist rechteckförmig.
+
- $y(t)$&nbsp; is rectangular.
- $y(t)$ ist dreieckförmig.
+
- $y(t)$&nbsp; is triangular.
+ $y(t)$ ist trapezförmig.
+
+ $y(t)$&nbsp; is trapezoidal.
- Der Maximalwert von $y(t)$ beträgt $1\hspace{0.05cm} \rm V$.
+
- The maximum value of&nbsp; $y(t)$&nbsp; is&nbsp; $1\hspace{0.05cm} \rm V$.
  
  
{Es gelte weiter $τ =  0$. Berechnen Sie das Ausgangssignal $z(t)$, wenn $x(t)$ zum Zeitpunkt $t = 0$ von Null auf $1\hspace{0.05cm} \rm V$ springt. <br>Welche Aussagen treffen zu?
+
{The following still holds: &nbsp; $τ =  0$. Compute the output signal&nbsp; $z(t)$, if&nbsp; $x(t)$&nbsp; jumps from zero to&nbsp; $1\hspace{0.05cm} \rm V$&nbsp; at time&nbsp; $t = 0$&nbsp;. <br>Which statements are true?
 
|type="[]"}
 
|type="[]"}
- $z(t)$ ist eine gerade Funktion der Zeit.
+
- $z(t)$&nbsp; is an even function of time.
+ $z(t)$ weist bei $t = 0$ eine Sprungstelle auf.
+
+ $z(t)$&nbsp; has a jump discontinuity at&nbsp; $t = 0$&nbsp;.
+ Zum Zeitpunkt $t = 0$ ist $z(t) = 0$.
+
+ At time&nbsp; $t = 0$&nbsp;, &nbsp; $z(t) = 0$ holds.
+ Für $t > 1 \ \rm ms$ ist $z(t) = 0$.
+
+ For&nbsp; $t > 1 \ \rm ms$&nbsp;, &nbsp; $z(t) = 0$ is true.
  
  
{Welchen Verlauf hat $z(t)$ als Antwort auf das sprungförmige Eingangssignal $x(t)$, wenn die Laufzeit &nbsp;$τ =1 \hspace{0.05cm} \rm ms$&nbsp; ist? <br>Welcher Signalwert tritt bei &nbsp;$t =1 \hspace{0.05cm} \rm ms$&nbsp; auf?
+
{What is the curve shape of&nbsp; $z(t)$&nbsp; in response to the step-shaped input signal&nbsp; $x(t)$, if the runtime is &nbsp;$τ =1 \hspace{0.05cm} \rm ms$&nbsp;? <br>What signal value occurs at&nbsp;$t =1 \hspace{0.05cm} \rm ms$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$z(t = 1 \rm \ ms) =\ $ { 0.5 3% } $\ \rm V$
 
$z(t = 1 \rm \ ms) =\ $ { 0.5 3% } $\ \rm V$
Line 70: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Bedingung $H(f = 0) = 1$ bedeutet, dass die Fläche der Impulsantwort gleich $1$ ist. Daraus folgt:
+
'''(1)'''&nbsp; The condition&nbsp; $H(f = 0) = 1$&nbsp; means that the area of the impulse response is equal to&nbsp; $1$&nbsp;. &nbsp; From this it follows that:
 
:$$k = {1}/{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$
 
:$$k = {1}/{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
 
*Das Ausgangssignal $y(t)$ ergibt sich als das Faltungsprodukt von $x(t)$ und $h(t)$.  
+
'''(2)'''&nbsp; <u>Approaches 2 and 4</u> are correct:
*Die Faltung zweier gleich breiter Rechtecke ergibt ein Dreieck mit dem Maximum bei $t = 0$:
+
*The output signal&nbsp; $y(t)$&nbsp; is obtained as the convolution product of&nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$.  
 +
*Convolution of two rectangles of equal width results in a triangle with its maximum at&nbsp; $t = 0$:
 
:$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot  \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau =
 
:$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot  \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau =
 
  1\hspace{0.05cm}{\rm V}\cdot  \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$
 
  1\hspace{0.05cm}{\rm V}\cdot  \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$
  
  
[[File: P_ID859__LZI_A_1_6_c.png | Trapezimpuls| rechts|frame]]  
+
 
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
+
[[File: P_ID859__LZI_A_1_6_c.png | right| frame|Trapezoid pulse]]  
*Die Faltung von zwei unterschiedlich breiten Rechtecken führt zu einem trapezförmigen Ausgangssignal entsprechend der Skizze.  
+
'''(3)'''&nbsp; <u>Approach 3</u> is correct:
*Der Maximalwert tritt im konstanten Bereich von &nbsp;$-0.5 \hspace{0.05cm} \rm ms$&nbsp; bis &nbsp;$+0.5 \hspace{0.05cm} \rm ms$&nbsp; auf und beträgt
+
*Convolution of two rectangles of different widths results in the trapezoidal output signal as shown in the sketch.  
 +
*The maximum value occurs in the constant range from&nbsp;$-0.5 \hspace{0.05cm} \rm ms$&nbsp; to &nbsp;$+0.5 \hspace{0.05cm} \rm ms$&nbsp; and is
 
:$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot  \frac{1}{2\,{\rm
 
:$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot  \frac{1}{2\,{\rm
 
  ms}} \hspace{0.05cm}\cdot 1\,{\rm  ms} = 0.5\hspace{0.05cm}{\rm V}.$$
 
  ms}} \hspace{0.05cm}\cdot 1\,{\rm  ms} = 0.5\hspace{0.05cm}{\rm V}.$$
  
  
[[File: P_ID860__LZI_A_1_6_d.png | Akausale HP–Sprungantwort | rechts|frame]]  
+
[[File: P_ID860__LZI_A_1_6_d.png | right| frame|Non-causal HP step response]]  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2, 3 und 4</u>:
+
'''(4)'''&nbsp; <u>Approaches 2, 3 and 4</u> are correct:
*Die Impulsantwort des Gesamtsystems lautet: &nbsp; $h_{\rm HP}(t) = \delta(t) - h(t).$ Diese beiden Anteile sind in der Skizze dargestellt.  
+
*The impulse response of the total system is: &nbsp; $h_{\rm HP}(t) = \delta(t) - h(t).$&nbsp; Both parts are shown in the sketch.  
*Durch Integration über $h_{\rm HP}(t)$ und Multiplikation mit $1 \hspace{0.05cm} \rm V$ kommt man zum gesuchten Signal $z(t)$. In der unteren Skizze sind  dargestellt:
+
*The searched-for signal&nbsp; $z(t)$ is obtained via integration over &nbsp; $h_{\rm HP}(t)$&nbsp; and multiplication by&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp;. <br>In the below sketch are shown:
:*das Integral über &nbsp;$δ(t)$&nbsp; blau,  
+
:#the integral over &nbsp;$δ(t)$&nbsp; blue,  
:*die Funktion &nbsp;$-σ(t)$&nbsp; rot, und
+
:#the function &nbsp;$-σ(t)$&nbsp; red,&nbsp; and
:*das gesamte Signal &nbsp;$z(t)$&nbsp; grün.
+
:#the entire signal &nbsp;$z(t)$&nbsp; green.
*$z(t)$ ist eine ungerade Funktion in $t$ mit einer Sprungstelle bei $t = 0$: &nbsp; Der Signalwert bei $t = 0$ liegt genau in der Mitte zwischen dem links&ndash; und dem rechteckseitigem Grenzwert und ist somit 0.  
+
*$z(t)$&nbsp; is an odd function in&nbsp; $t$&nbsp; with a jump discontinuity at&nbsp; $t = 0$: &nbsp; The signal value at&nbsp; $t = 0$&nbsp; is exactly halfway between the left&ndash; and the right-hand limit and is therefore zero.  
*Für $t > 1 \hspace{0.05cm} \rm ms$ gilt ebenfalls $z(t) = 0$, da das Gesamtsystem eine Hochpass-Charakteristik aufweist.
+
*For&nbsp; $t > 1 \hspace{0.05cm} \rm ms$&nbsp;, &nbsp; $z(t) = 0$ holds, too, since the overall system has a high-pass characteristic.
 
<br clear=all>
 
<br clear=all>
[[File: P_ID861__LZI_A_1_6_e.png | Kausale HP–Sprungantwort | rechts|frame]]  
+
[[File: P_ID861__LZI_A_1_6_e.png | right| frame|Causal HP step response]]  
'''(5)'''&nbsp; Die untere Grafik zeigt die resultierende Impulsantwort $h_{\rm HP}(t)$ und die Sprungantwort $σ_{\rm HP}(t)$, die bei $t = 0$ auf $1$ springt und bis zum Zeitpunkt $t = 2 \hspace{0.05cm} \rm ms$ auf den Endwert Null abklingt. Zum Zeitpunkt $t = 1\ \rm  ms$ ergibt sich $σ_{\rm HP}(t) = 0.5$.
+
'''(5)'''&nbsp; The bottom graph shows the resulting impulse response&nbsp; $h_{\rm HP}(t)$&nbsp; and the step response&nbsp; $σ_{\rm HP}(t)$.
 +
*The latter jumps at&nbsp; $t = 0$&nbsp; to the value&nbsp; $1$&nbsp; and decays to the final value of "zero" until time&nbsp; $t = 2 \hspace{0.05cm} \rm ms$&nbsp;.  
 +
*At time&nbsp; $t = 1\ \rm  ms$&nbsp;, the following is obtained: &nbsp;$σ_{\rm HP}(t) = 0.5$.
  
*Das Signal $z(t)$ ist formgleich mit der Sprungantwort $σ_{\rm HP}(t)$, ist jedoch noch mit $1 \hspace{0.05cm} \rm V$ zu multiplizieren.  
+
*The signal&nbsp; $z(t)$&nbsp; is identical in shape to the step response&nbsp; $σ_{\rm HP}(t)$ but is yet to be multiplied by&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp;.  
*Der gesuchte Signalwert zur Zeit $t_1 = 1 \hspace{0.05cm} \rm ms$ ergibt sich zu $z(t_1) \; \rm \underline{ = \ 0.5}$.  
+
*The searched-for signal value at time&nbsp; $t_1 = 1 \hspace{0.05cm} \rm ms$&nbsp; thus results in&nbsp; $z(t_1) \; \rm \underline{ = \ 0.5 \: {\rm V}}$.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 111: Line 118:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 14:49, 8 September 2021

Rectangular impulse response, non-causal and causal

We consider below the constellation shown in the graph:

  • The frequency response  $H(f) = H_1(f) · H_2(f)$  in the lower branch is determined by the impulse responses of its two subcomponents.
  • Here,  $h_1(t)$  is constantly equal to  $k$  in the reange from  $-1\ \rm ms$  to  $+1\ \rm ms$  and zero outside.
  • At the range limits, half the value is valid in each case.
  • The time variable drawn in the figure is thus  $Δt = 2 \ \rm ms$.


The impulse response of the second system function  $H_2(f)$  is:

$$h_2(t) = \delta(t - \tau).$$

The frequency response between the signals  $x(t)$  and  $z(t)$  is of high-pass character and generally:

$$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi}f \tau}.$$
  • For the subtasks  (1)  to  (4)  the following holds:   $τ = 0$   ⇒   $H(f) = H_1(f)$.
  • However, using  $τ = 0$  this can also be formulated as follows  $(Δt = 2 \ \rm ms)$:
$$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$
  • With no effect on the solution of the problem, note that this equation is not applicable for  $τ ≠ 0$  because of:
$$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$





Please note:



Questions

1

Calculate the height  $k$  of the impulse response  $h_1(t)$  on the side condition of  $H_1(f = 0) = 1$.

$k \ =\ $

$\ \rm 1/s$

2

Let the input signal  $x(t)$  be a rectangle symmetric about  $t = 0$  of duration $T = 2 \ \rm ms$  and height $1 \, \rm V$. Let  $τ = 0$ hold.
Which statements are true?

$y(t)$  is rectangular.
$y(t)$  is triangular.
$y(t)$  is trapezoidal.
The maximum value of  $y(t)$  is  $ 1\hspace{0.05cm} \rm V$.

3

Which statements are true, if  $x(t)$  has a rectangle width of  $T = 1 \ \rm ms$ ?

$y(t)$  is rectangular.
$y(t)$  is triangular.
$y(t)$  is trapezoidal.
The maximum value of  $y(t)$  is  $1\hspace{0.05cm} \rm V$.

4

The following still holds:   $τ = 0$. Compute the output signal  $z(t)$, if  $x(t)$  jumps from zero to  $1\hspace{0.05cm} \rm V$  at time  $t = 0$ .
Which statements are true?

$z(t)$  is an even function of time.
$z(t)$  has a jump discontinuity at  $t = 0$ .
At time  $t = 0$ ,   $z(t) = 0$ holds.
For  $t > 1 \ \rm ms$ ,   $z(t) = 0$ is true.

5

What is the curve shape of  $z(t)$  in response to the step-shaped input signal  $x(t)$, if the runtime is  $τ =1 \hspace{0.05cm} \rm ms$ ?
What signal value occurs at $t =1 \hspace{0.05cm} \rm ms$ ?

$z(t = 1 \rm \ ms) =\ $

$\ \rm V$


Solution

(1)  The condition  $H(f = 0) = 1$  means that the area of the impulse response is equal to  $1$ .   From this it follows that:

$$k = {1}/{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$


(2)  Approaches 2 and 4 are correct:

  • The output signal  $y(t)$  is obtained as the convolution product of  $x(t)$  and  $h(t)$.
  • Convolution of two rectangles of equal width results in a triangle with its maximum at  $t = 0$:
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$


Trapezoid pulse

(3)  Approach 3 is correct:

  • Convolution of two rectangles of different widths results in the trapezoidal output signal as shown in the sketch.
  • The maximum value occurs in the constant range from $-0.5 \hspace{0.05cm} \rm ms$  to  $+0.5 \hspace{0.05cm} \rm ms$  and is
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$


Non-causal HP step response

(4)  Approaches 2, 3 and 4 are correct:

  • The impulse response of the total system is:   $h_{\rm HP}(t) = \delta(t) - h(t).$  Both parts are shown in the sketch.
  • The searched-for signal  $z(t)$ is obtained via integration over   $h_{\rm HP}(t)$  and multiplication by  $1 \hspace{0.05cm} \rm V$ .
    In the below sketch are shown:
  1. the integral over  $δ(t)$  blue,
  2. the function  $-σ(t)$  red,  and
  3. the entire signal  $z(t)$  green.
  • $z(t)$  is an odd function in  $t$  with a jump discontinuity at  $t = 0$:   The signal value at  $t = 0$  is exactly halfway between the left– and the right-hand limit and is therefore zero.
  • For  $t > 1 \hspace{0.05cm} \rm ms$ ,   $z(t) = 0$ holds, too, since the overall system has a high-pass characteristic.


Causal HP step response

(5)  The bottom graph shows the resulting impulse response  $h_{\rm HP}(t)$  and the step response  $σ_{\rm HP}(t)$.

  • The latter jumps at  $t = 0$  to the value  $1$  and decays to the final value of "zero" until time  $t = 2 \hspace{0.05cm} \rm ms$ .
  • At time  $t = 1\ \rm ms$ , the following is obtained:  $σ_{\rm HP}(t) = 0.5$.
  • The signal  $z(t)$  is identical in shape to the step response  $σ_{\rm HP}(t)$ but is yet to be multiplied by  $1 \hspace{0.05cm} \rm V$ .
  • The searched-for signal value at time  $t_1 = 1 \hspace{0.05cm} \rm ms$  thus results in  $z(t_1) \; \rm \underline{ = \ 0.5 \: {\rm V}}$.